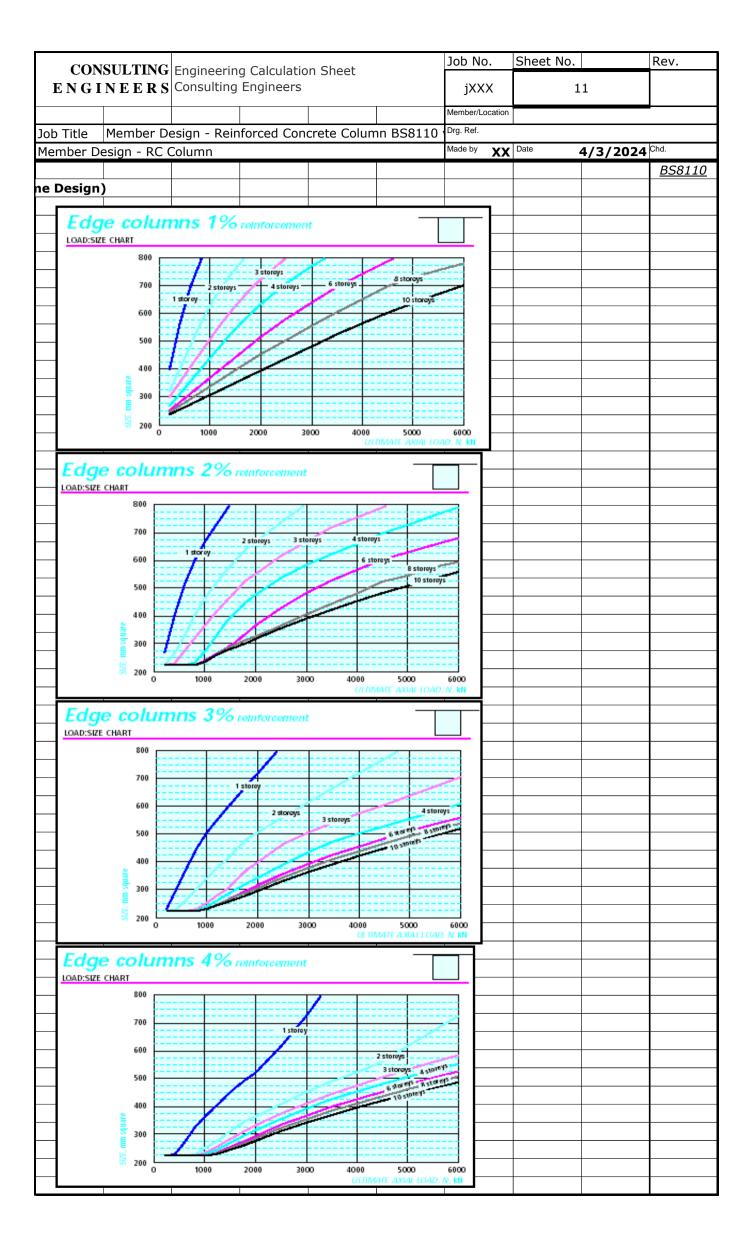
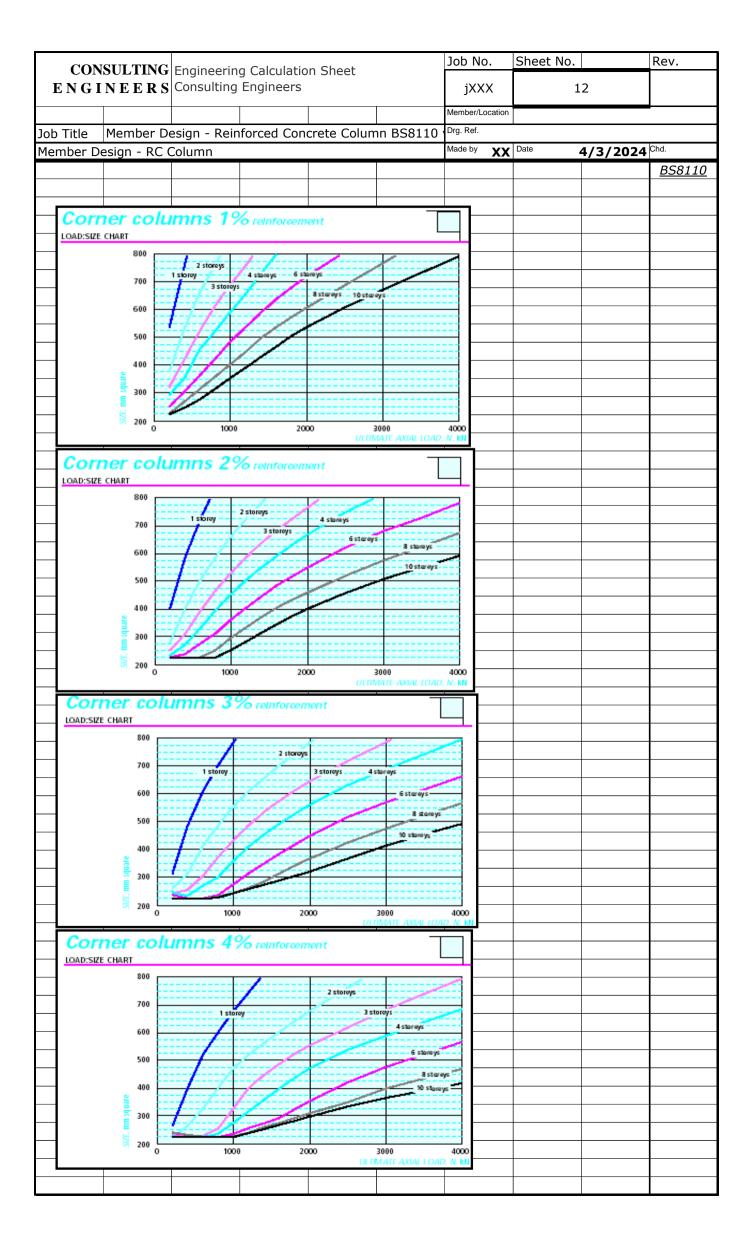

						Job No.	She	et No.		Rev.
	SULTING			n Sheet			5110		1	itev.
ENGI	NEERS	Consulting	Engineers			jXXX			1	
						Member/Loca	tion			
Job Title	Member De	esign - Rein	forced Con	crete Colum	nn BS8110	Drg. Ref.				
	esign - RC (Made by	X Date		4/3/202	4 Chd.
						-				BS8110
Effects Fr	om Struct	ural Analys	sis							
Axial force	, N (tension	ve and co	mp +ve) (ensure >=	0)			30000	kN	ОК
	e shear for		. , ,						kN	
Minor plan	e shear for	ce, V _z						0	kN	
Major plan	e primary b	ending mor	ment, M _{xp}					0	kNm	
Minor plan	e primary b	ending mor	ment, M _{vp}					0	kNm	
Imperfecti	on deflectio	n (in h dire	ction), $e_h =$	MIN (0.05	h, 20mm)			20	mm	cl.3.8.2.4
	on deflectio							8	mm	cl.3.8.2.4
	e imperfect							600	kNm	cl.3.8.2.4
	e imperfect								kNm	cl.3.8.2.4
•	e max desig				-	M _{eh})			kNm	cl.3.8.3.2
	e max desig								kNm	cl.3.8.3.2
1	:		, -,	,	, auu,y,					1
Material F	Properties									
Characteri	⊥ stic strengtl	n of concret	e, f _{c.} (< 10)5N/mm²:	HSC)		60	_	N/mm ²	ОК
	gth of longi			,, 1	7		460		N/mm ²	
	gth of shea		,				460		N/mm ²	
Ticia screii		l mik sceen,	l v				_ 460 	_	111/111111	
Bracing o	r Unbrace	d Column								
Diacing 0	Olibrace					Maj	0.5	Minor		
Proced or	unbraced co	lumn 2 (aff	 Facts slands	rnoce limite	critoris Unl		▼ Brace			cl.3.8.1.5
	$ed = \{columnian}$								l autoria a a	
Section D	imensions									
Section two	pe (affects o	concrete ar	a clondorr	acc stool :	aroa rog)	Po	l ctangula	. 🔻		
	ger), h (rec					Re	Ctarigulai	10000	mm	
• •	aller), ii (rec) 				mm	
•	,, ,						1.5		 	
	ction, $A_c = 1$		guiar) or πD	74 (circuia	r) 		15	00000		-12016
	e clear heig	,						3.075	<u> </u>	cl.3.8.1.6
	e clear heig							3.075		cl.3.8.1.6
	e effective							6.765		cl.3.8.1.6
Milnor plan	e effective l	n eignt, l_{eff,y}						2.614	m	cl.3.8.1.6
			<u> </u>							
	al steel rein					<u> </u>	10		mm	
	tudinal stee							78	2	Note
	tudinal stee							6126	mm²	
	tudinal stee							0	2	Note
Total longi	tudinal stee	l area provi	ided (ortho	gonal bendi	ng), $A_{sc+} =$	$n_{l+}.\pi.\phi^2/4$	4		mm ²	
	tudinal stee					<u> </u>		6126		
	is the total									
is the total	l longitudina	al steel area	for bendin	g in the ort	thogonal pla	ane, excl	uding s	teel co	unted witi	hin A _{sc})
	diameter, ¢						10	•	mm	
	links in a c							4		
	ded by all li	nks in a cro	ss-section,	$A_{sv,prov} = n$	$_{\rm v}.\pi.\phi_{\rm link}^2/4$			314	mm ²	
Pitch of lin								120	mm	
Cover to a	II reinforcen	nent, cover	(usually 35	(C35) or 3	30 (C40) int	ternal; 40	e:	25	mm	
	nain reinford							35	mm	

CO	NSULTING	Fnaineerin	na Calculatio	n Sheet		Job No.	Sheet No.		Rev.
	INEERS			ni Sneet		jXXX		2	
						Member/Location			
			4 10						
Job Title			nforced Con	crete Colum	ın BS8110 '	Drg. Ref.	D-4-		Ob d
Member [Design - RC (Column	1	1		Made by XX	Date	4/3/2024	
									<u>BS8110</u>
Utilisatio	on Summar	y				_	_		
						Major			
	Braced or	unbraced				Unbraced		4	
						Major			
	Slendernes	ss (short or	slender)			Short	Slender	4	
	Item					UT	Remark		
	Max (brace	ed) slender	ness			44%	OK		
	Max (unbr	aced) slend	lerness / he	ight		34%	OK		
	Shear ultir	nate stress				0%	OK		
	Shear (wit	h axial load	d) design ca	pacity		0%	OK		
	Shear (axi	al confinem	nent) design	capacity		N/A	N/A		
	Method 1 ((nominal m	oments; sle	nder colum	n Euler buc	46%	OK		
	Method 2 ((nominal m	oments; sh	ort column o	crushing)	79%	OK		
	Method 3 ((small assu	med mome	nts; short co	olumn crusl	90%	OK		rgence
			ign momen	ts; short col	umn crushi	98%	OK	User D	Defined
	Total utili	sation				98%	ОК	Design	Column
	Detailing	requirem	ents			0	K	(Itera	itive)
	% Vertical	reinforcem	nent				0.41	%	
				antity (220			171	kg/m ³	
	7850 . [(A	$_{sc}+A_{sc+})/$	$A_c + (A_{sv,p})$	_{rov} .(h+b or	2D)/S) / A	c]; No laps,	;		
	Estimated	steel reinfo	orcement qu	antity (220	– 300kg/m	³)	240	kg/m ³	IStructE
	11000 . [($A_{sc} + A_{sc+}$	$/A_c + (A_{sv})$, _{prov} .(h+b o	r 2D)/S) / /	A _c]; Laps;			
e, shear	w [Note that						% rebar];		
	Material co		concrete, c		units/m ³			units/tonne	e
	Reinforced	concrete r	naterial cos	t = [c+(est.	rebar quai	nt).s].A _c	1634	units/m	
Column	Effective He	eight							
		,	Fable 3 19 -	– Values of	B for brace	ed columns		<u> </u>	
	End condition		Table 6.10	varues or	<u> </u>	ition at bottor			
	Ena condition	анор		1	End cond	2	<u>"</u>	3	
1			0.75	-	0.80		0.90		-
2			0.80		0.85		0.95		
3			0.90		0.95		1.00		
		T	able 3.20 —	Values of β	for unbra	ced column	ıs		
	End condition	at top			End condi	ition at bottor	n		
				1		2		3	
1		I	1.2		1.3		1.6		
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$			1.3 1.6		1.5 1.8		1.8		
4		I	2.2		1.0				
1			<u> </u>						
201	1 6 9 E J	Ji+i							
	1.6.2 End con								
	four end cond					11 4 1			
	Condition 1. ast as deep as								
	nnected to a								
	Condition 2.							either side w	hich
	e shallower t							11 1	14-
	Condition 3. ovide restrain								ed to
	Condition 4.								
	g. the free en								
								+	
	1	1	1	1	1	i .	1	1	

		1				Ţ			
CON	SULTING	Engineerin	n Calculatio	n Sheet		Job No.	Sheet No.		Rev.
	NEERS			iii Siicct		jXXX	l	4	
ENGI	NEEKS	Consuming	Liigineers]^^^	'	+	
						Member/Location			1
Job Title	Member De	esian - Rein	forced Con	crete Colum	nn BS8110	Drg. Ref.			
	esign - RC (<u></u>	200110	Made by XX	Date	4/3/2024	Chd.
Member D	Caigii RC (7/3/2024	
CII	6 0 - 1			61 1					<u>BS8110</u>
Sienderne	ess of Colu	ımn (wnet	ner Snort	or Sienaer	<u> </u>				-
Major plan	e eff. slend	erness, l _{eff,x}	/(h or D)			Major	0.7		
Minor plan	e eff. slend	erness, l _{eff,y}	/(b or D)			Minor	17.4		
Major plan	e short colu	ımn limiting	eff. slende	rness (15 b	raced; 10	Major	10.0		cl.3.8.1.3
	e short colu						15.0		cl.3.8.1.3
	e eff. slend						Short		cl.3.8.1.3
	e eff. slend						Slender		cl.3.8.1.3
Millor plan				lia, sieriuei		MIIIOI	Siender		C1.3.0.1.3
N4 = 1 =	1		1 //1-	5)					
	e max clear					Major	0.3		cl.3.8.1.7
Minor plan	e max clear	slendernes	ss I _{clear,y} /(b	or D)		Minor	20.5		cl.3.8.1.7
Max (brace	ed or unbra	ced) clear s	lenderness	utilisation ((<= 60)		34%		OK
Major plan	e max eff. s	slenderness	I _{eff,x} /(h or	D)		Major	0.7		cl.3.9.3.7.
	e max eff. s					Minor	17.4		cl.3.9.3.7.
	ed) eff. slen						44%		ОК
Max (blace				- - -0)			-1-1-70		OK
	ie max cleai		,	Unbraced (Sh	ear Wall Cant	i.) 🔻	3075		cl.3.8.1.8
Minor plan	e max clear	r height I _{clea}	r,y	N/A		▼	3075	mm	cl.3.8.1.8
Max (unbra	aced cant.)	clear heigh	t utilisation	(<= 60(h	or b) or 100	O(h or b) ² /(1%		ОК
Major plan	e max eff. s	slenderness	l _{eff.x} /(h or	D)		Major	0.7	cl.3.	8.5, cl.3.9.
	e max eff. s		- /			Minor	17.4		8.5, cl.3.9.
	aced) eff. s						2%	0.101	OK
Max (unbit			demoder (_ <u>50)</u>			2 /0		O.K
		, , ,			6.11				
Note for R	C columns a				s follows:-				
		ort (stocky)					15		cl.3.8.1.3
		nder I _{clear,x/y})			60		cl.3.8.1.7
	braced slei	nder I _{eff,x/y} /	(h/b or D)				40		cl.3.9.3.7.2
	unbraced s	short (stock	$(y) I_{eff,x/y}/(h)$	/b or D)			10		cl.3.8.1.3
		slender I _{clear}					60		cl.3.8.1.7
		cant. slende			100h ²	/b} {60b,			cl.3.8.1.8
			,			/ <i>D</i>	30		+
		slender I _{eff,x}							cl.3.8.5
		slender I _{eff,x}					30		cl.3.9.3.7.
Note for pi	lain (unrein		-	ess limits a	re as follou	/s:-			
	braced sho	ort (stocky)	I _{eff} /THK				15		cl.3.8.1.3
	unbraced s	short (stock	y) I _{eff} /THK				10		cl.3.8.1.3
	braced or t	unbraced sl	ender I _{eff} /7	HK			30		cl.3.9.4.4
									
									
									
									<u> </u>
									
									-
									
									<u> </u>
									<u> </u>
]							<u></u>

CON	SULTING	Engineerin	a Calculatio	n Sheet		Job No.	Sheet No.		Rev.	
		Consulting		iii Sileet		jXXX		5		
Divol	NEEKS			T	1		,			
						Member/Location				
Job Title		esign - Rein	forced Con	crete Colun	nn BS8110	Drg. Ref.	D-4-		01-1	
Member D	esign - RC (Column	İ	İ	1	Made by XX	Date	4/3/2024		
	- 61								 	<u>3110</u>
Moments	From Sien	derness E	rrects						Cl.3.	8.3.1
Additional	moment for	 r slender co	lumne M				DI / A	LeNimo	2/ 2	0 2 1
		r slender co		,	<i>N</i>	$I_{\rm add} = Na_{\rm u}$		kNm kNm	ł	8.3.1 8.3.1
Additional		e effective l		1,y 			N/A		-	8.3.1
		e effective l					2.614			8.3.1
		in x (h in th	.,	– h or D)				mm	-	8.3.1
		in y (h in th		-		$a_{\rm u} = \beta_{\rm a} K h$		mm	ł — — —	8.3.1
		in x (b' in t	•				N/A		-	8.3.1
		in y (b' in t	•		β_{a}	$=\frac{1}{2000}\left(\frac{l_{\rm e}}{b'}\right)^2$	0.152		<u> </u>	8.3.1
	Cocincicine	, (5)	ino equatio	50.5)			01102		0.757	3.3.1
	Reduction	factor due t	o axial load	ls	$K = \frac{1}{N_{\odot}}$	$\frac{V_{\rm uz} - N}{V_{\rm bol}} \le 1$	0.64		cl.3.	8.3.1
	Ultimate a				$V_{yz} = 0.45 f_{out}$	$A_{\rm c} + 0.95 f_{\rm y} A_{\rm sc}$	43177			8.3.1
		at balanced	failure, N _{ba}			7,7 50	22500		-	8.3.1
			. 50							
Single Ax	is Moment	From Biax	kial Momei	nts						
Major plan	e max desig	gn bending	moment, M	x			600	kNm		
Minor plan	e max desig	gn bending	moment, M	у			435	kNm		
Ratio N/(b	hf _{cu}) rectan	gular or N/((D ² f _{cu}) circu	lar			0.33		cl.3.	8.4.5
Enhancem	ent coefficie	ent for biaxi	al bending,	β			0.61		cl.3.	8.4.5
3 <i>. 7 .</i>			Table 3.22	— Values	of the coef	ficient β	I		▔	
3.7. N	0	0.1	0.2	2 0	0.3	0.4	0.5	≥0.6	╗╏	
$\frac{N}{bhf_{\rm cu}}$										
β	1.00	0.88	3 0.7	77 0	.65	0.53	0.42	0.30	\dashv	
Eff Live I			- 1/2				0060			
		or D - cov					9960	mm		
			-	lont cinalo	handing av	⊥ tis, single st			-	
(NOLE TOT L	ne purpose	or determin	iirig Equiva	ient single	Denuing ax	is, single st	eeriayer as	Surrieu)		
If M /h '	> M / h'	then inc	reased mag	ior plane be	endina M	$I_{\rm x} + \beta \frac{h'}{h'} M_{\rm y}$	N/A	kNm	cl.3.	8.4.5
If $M_{\rm x}/h'$	=111y/0			, o. p.a		* 'b' y			0.7.0	
If M_{-}/h'	$< M_{\rm y}/b'$	then inc	creased mir	nor plane be	ending M	$a + \beta \frac{b'}{M} M_{-}$	439	kNm	cl.3.	8.4.5
X	У					<i>y ' h'</i> x				
Increased	single axis	bending mo	ment, M				439	kNm	cl.3.	8.4.5
Plane of de	esign mome	nt for recta	ngular colu	mns (h- or	b-)		b-plane		cl.3.	8.4.5
									<u> </u>	
						1				
									 	
						1				
					1	1	1			


COM	CIII TING	Engineeric	a Calculatia	n Chast		Job No.	Sheet No.		Rev.
	NEERS		g Calculatio	n Sneet		ivvv		e	
ENGI	NEEKS	Consuming	Liigineers			jXXX	'	6	
						Member/Location			
Job Title	Member De	esign - Rein	forced Con	crete Colum	nn BS8110	Drg. Ref.			
Member De	esign - RC (Column				Made by XX	Date	4/3/2024	Chd.
									BS8110
Shear (W	ith Axial Lo	oad)							cl.3.4.5.12
Shear insig	nificant if M	1/N < 0.6 (h or b) for ı	ect, 0.6 D	for circ	15 5	90	mm	cl.3.8.4.6
(Note h or	b dependin	g on equiva	alent single	axis of ben	Shea	ar Insignif	icant		cl.3.8.4.6
Maximum s	shear force,	$V_d = MAX$	(V_y, V_z)				0	kN	
Ultimate sh	near stress,	$V_{ult} = V_d /$	A_c (< $0.8f_{cu}$	^{0.5} & {5.0,7	.0}N/mm²)	0.00	N/mm ²	.3.4.5.2 B
Note the u	Itimate she	ar stress lin	nit of 5.0 or	7.0N/mm	² is used fo	$rf_{cu} \leq 60$			ively;
	near stress						0%		ОК
Design she	ar stress, v	$v_d = V_d / A_c$					0.00	N/mm ²	
			either cal	culating v_d	at d from	support and			
			0 BS8110 e						
			port as cla						
	.4.5.12 BS8								
			nt provided	uniaxial be	ending), A	$p_{rov} = A_{sc} / 2$	3063	mm ²	1
$\rho_{\rm w} = 100 A_{\rm s}$					3 ,, 3,		0.20		
	istance to te	ension stee	l, h' or b'					mm	
			valent single	e axis of be	nding, for r	ect only)			
			/(h' or b')) ¹				0.69	N/mm ²	.3.4.5.4 B
(0175))(Pw·cu/								
Including a	xial force e	v_{c}	$v_{\rm e}' = v_{\rm e} + 0.6$	$\frac{NVh}{\Lambda M} < v_c$	$v' = v_c \sqrt{1 - \frac{1}{2}}$	$+ N/(A_c v_c)$	0.69	N/mm ²	cl.3.4.5.1
	N/A _c			$A_{\rm c}M$, ,	20.0	N/mm ²	cl.3.4.5.1.
		M or V _d D/M	 but < 1.0				0.00	-	cl.3.4.5.1.
(Note h or			alent single	axis of hen	dina. for re	ct only)	0.00		
(11010 11 01	в асренат	g on equite	inerre sirigre			<i>cc omy)</i>			
Minimum s	hear strend	<u> </u> ith ν = ΜΔ	XX (0.4, 0.4	(f /40) ^{2/3})	f <80N/m	nm ²	0.52	N/mm ²	.3.4.5.3 B
riiiiiiiiiiiiiiiiii 3	near streng			(Icu/ TO)),	l cu 30014/11	1111	0.52	11/111111	.5.4.5.5 B
Check v.	< 0.5v ₋ ' (c	olumn) (m	inor elem	ents) or 1.	.0v.' (wall) for no lin	VALID	Wall	cl.3.8.4.6
		hear capaci			(11411)		1032		CHOICH ITC
		- cur cupus	-, -(-(-				1001	18.14	
Check 0.0	v ' (colum	n) or 1.0v	_ c' (wall) <	v. < v + v	v ' for non	ninal links	N/A		cl.3.4.5.3
			rect, D circ					mm²/mm	C.1.3. 11.3.13
			g on equiva					111111 / 111111	
	-	$(v_r + v_c').(A$		Tierre sirigie	dxis or ben	unig, for re	1818	kN	
	♥ cap,nom (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	c <i>)</i>				1010	KIV	
Check v.	> v _r + v _c ' f	or design	links				N/A		cl.3.4.5.3
CHECK Va			circ)(v _d -v _c	'\/(0.95f_\	<u> </u> ie Δ /S >			mm²/mm	C1.3.4.3.3
			g on equiva					/ 1111111	
	-		5f _{yv}).(h or l				1204	kN	
	- cap ('~sv,	provi Silois			-/ · •c ·(/^c	,	720-1		
Area provid	led hv all lii	nks in a cro	ss-section,	A.,			31/	mm ²	
	ov / S value		20 30000011,	· 'sv,prov				mm ² /mm	
			istance util	isation			0%		ОК
Design sile	ai (With ax	iai ioaa <i>j</i> res	notarice util	1341011			U 70	-	- OK
Shear / Av	ial Confine	ement)			Consider for C	Columns Only	▼		
J.ICUI (AX					CONSIDER TOT C	Joidinii Olliy			
Minimum c	onfining pre	essure f		Non-Saismic	ı Design 0.0151	fck -	NI/A	N/mm ²	McFarlane
	January Pro	-3341C, 1s		יאטוי-סבוטווונ	C31A11 0'0 131		IN/A	-	IStructE, 0
Confining	ressure, f _s	<u> </u>					NI/A	N/mm ²	McFarlane
Comming p			or rect, 0.6	D for circ1	_ 2 cover			mm	StructE, C
			nks in a cro			YIINK		mm ²	Juliacie, C
		_{ov} / S value		55 SCCIOII,	' 'sv,prov			mm ⁻ /mm	-
	IIICU A _{sv,pro}	ov / S value					IN/A	ппп /тт	1
Docion -b -	an (aviel	nfinom ==+\	rociota	utiliontina			N-/A-		AL /A
vesign she	ar (axiai co	iiiiiiement) 	resistance	utilisation			N/A	<u> </u>	N/A


CONSULTING Engineering Calculation Sheet ENGINEERS Consulting Engineers jxxx 7 Member/Location
Member Design - Reinforced Concrete Column BS8110 Drg, Ref. Drg, Ref.
$\begin{array}{ c c c c c } \hline \text{Dob Title} & \text{Member Design - Reinforced Concrete Column BS8110} & \text{Prg. Ref.} \\ \hline \text{Member Design - RC Column} & \text{Made by } & \textbf{XX} & \text{Date} & \textbf{4/3/2024} & \text{Chd.} \\ \hline \text{Member Design - RC Column} & & & & & & & & & & & & & & & & & & &$
Member Design - RC Column Made by XX Date 4/3/2024 Phd. BS8111 Detailing Requirements All detailing requirements met? All detailing requirements met? All detailing requirements met? Whin longitudinal steel reinforcement number, n_1 (>= 4 rectangular; >=6 circul 78 OK Min longitudinal steel reinforcement diameter, ϕ (>=12mm column Wall 10 mm OK Percentage of reinforcement ($A_{sc}+A_{sc+}$)/ $A_c \times 100\%$ OK Percentage of reinforcement A_{sc} / $A_c \times 100\%$ (>0.40+0.01(f_{cu} -60)]% and <5.00%) TR49 cl.3. Longitudinal steel reinforcement pitch (>75mm+ ϕ , >100mm+ ϕ if T40; <=300 261 mm OK Rectangular col bar pitch = $(b \text{ or } h)$ -2.cover _{main} - ϕ]/ $(n_1$ /(2. n_{layers})-1) 261 mm Note an allowance has been made for laps in the min pitch by increasing the criteria by the bar diameter. Min link diameter, ϕ ϕ
Detailing Requirements All detailing requirements met? All detailing requirements met? By definition, b <= h Min Idenaision (to facilitate concreting >= 125mm) Min longitudinal steel reinforcement number, n_1 (>= 4 rectangular; >=6 circul Min longitudinal steel reinforcement diameter, ϕ (>=12mm column Percentage of reinforcement ($A_{sc}+A_{sc+}$)/ A_c x 100% Percentage of reinforcement A_{sc}/A_c x 100% (>0.40+0.01(f_{cu} -60)]% and <5.00%) Rectangular steel reinforcement pitch (>75mm+ ϕ , >100mm+ ϕ if T40; <=300 Rectangular col bar pitch = [(b or h)-2.cover _{main} - ϕ]/ $(n_i/(2.n_{layers})-1)$ Circular col bar pitch = π .(D-2.cover _{main} - ϕ)/ n_1 Note an allowance has been made for laps in the min pitch by increasing the criteria by the bar diameter. Min link diameter, ϕ_{link} (>=0.25 ϕ ; >=6mm NSC; >=10mm HSC) Max link pitch, S Max link pitch, S Require an overall enclosing link. Require additional restraining links for each alternate longitudinal bar in each direction.
Detailing Requirements All detailing requirements met? All detailing requirements met? OK Min dimension (to facilitate concreting >= 125mm) Min longitudinal steel reinforcement number, n_i (>= 4 rectangular; >=6 circul Min longitudinal steel reinforcement diameter, ϕ (>=12mm column Percentage of reinforcement ($A_{sc}+A_{sc+}$)/ $A_c \times 100\%$ Percentage of reinforcement $A_{sc}/A_c \times 100\%$ (>0.40 %, [0.40+0.01(f_{cu} -60)]% and <5.00%) TR49 cl.3. Longitudinal steel reinforcement pitch (>75mm+ ϕ , >100mm+ ϕ if T40; <=300 Rectangular col bar pitch = [(b or h)-2.cover _{main} - ϕ]/(n_i /(2. n_{layers})-1) Circular col bar pitch = π .(D-2.cover _{main} - ϕ)/ n_i Note an allowance has been made for laps in the min pitch by increasing the criteria by the bar diameter. Min link diameter, ϕ_{link} (>=0.25 ϕ ; >=6mm NSC; >=10mm HSC) Max link pitch, S 100 Max link pitch, S Require an overall enclosing link. Require additional restraining links for each alternate longitudinal bar in each direction.
All detailing requirements met? OK By definition, $b <= h$ Min dimension (to facilitate concreting $>= 125 \text{mm}$) Min longitudinal steel reinforcement number, n_l ($>= 4$ rectangular; $>= 6$ circul Min longitudinal steel reinforcement diameter, ϕ ($>=12 \text{mm}$ column Percentage of reinforcement ($A_{\text{sc}}+A_{\text{sc+}}$)/ $A_{\text{c}} \times 100\%$ Percentage of reinforcement $A_{\text{sc}}+A_{\text{sc}}$ // $A_{\text{c}} \times 100\%$ Percentage of reinforcement pitch ($>75 \text{mm}+\phi$, $>100 \text{mm}+\phi$ if T40; $<=300$ Rectangular col bar pitch = [(b or h)-2.cover_main^- ϕ]/(n_l /($2.n_{\text{layers}}$)-1) Circular col bar pitch = π .(D-2.cover_main- ϕ)/ n_l Note an allowance has been made for laps in the min pitch by increasing the criteria by the bar diameter. Min link diameter, ϕ_{link} ($>=0.25\phi$; $>=6 \text{mm}$ NSC; $>=10 \text{mm}$ HSC) Max link pitch, S Require an overall enclosing link. Require additional restraining links for each alternate longitudinal bar in each direction.
By definition, b <= h Min dimension (to facilitate concreting >= 125mm) Min longitudinal steel reinforcement number, $n_{\rm l}$ (>= 4 rectangular; >=6 circul Min longitudinal steel reinforcement diameter, ϕ (>=12mm column Percentage of reinforcement ($A_{\rm sc}+A_{\rm sc+}$)/ $A_{\rm c}$ x 100% Percentage of reinforcement $A_{\rm sc}$ / $A_{\rm c}$ x 100% (>0.40%, [0.40+0.01($f_{\rm cu}$ -60)]% and <5.00%) TR49 cl.3. Longitudinal steel reinforcement pitch (>75mm+ ϕ , >100mm+ ϕ if T40; <=300 Rectangular col bar pitch = [(b or h)-2.cover_main- ϕ]/($n_{\rm l}$ /(2. $n_{\rm layers}$)-1) 261 mm (Note b or h depending on equivalent single axis of bending, for rect only) Circular col bar pitch = π .(D-2.cover_main- ϕ)/ $n_{\rm l}$ N/A mm Note an allowance has been made for laps in the min pitch by increasing the criteria by the bar diameter. Min link diameter, $\phi_{\rm link}$ (>=0.25 ϕ ; >=6mm NSC; >=10mm HSC) Max link pitch, S Require an overall enclosing link. Require additional restraining links for each alternate longitudinal bar in each direction.
By definition, b <= h Min dimension (to facilitate concreting >= 125mm) Min longitudinal steel reinforcement number, $n_{\rm l}$ (>= 4 rectangular; >=6 circul Min longitudinal steel reinforcement diameter, ϕ (>=12mm column Percentage of reinforcement ($A_{\rm sc}+A_{\rm sc+}$)/ $A_{\rm c}$ x 100% Percentage of reinforcement $A_{\rm sc}$ / $A_{\rm c}$ x 100% (>0.40%, [0.40+0.01($f_{\rm cu}$ -60)]% and <5.00%) TR49 cl.3. Longitudinal steel reinforcement pitch (>75mm+ ϕ , >100mm+ ϕ if T40; <=300 Rectangular col bar pitch = [(b or h)-2.cover_main- ϕ]/($n_{\rm l}$ /(2. $n_{\rm layers}$)-1) 261 mm (Note b or h depending on equivalent single axis of bending, for rect only) Circular col bar pitch = π .(D-2.cover_main- ϕ)/ $n_{\rm l}$ N/A mm Note an allowance has been made for laps in the min pitch by increasing the criteria by the bar diameter. Min link diameter, $\phi_{\rm link}$ (>=0.25 ϕ ; >=6mm NSC; >=10mm HSC) Max link pitch, S Require an overall enclosing link. Require additional restraining links for each alternate longitudinal bar in each direction.
Min dimension (to facilitate concreting $>= 125 \text{mm}$) Min longitudinal steel reinforcement number, n_{l} ($>= 4$ rectangular; $>= 6$ circul Min longitudinal steel reinforcement diameter, ϕ ($>= 12 \text{mm}$ column Percentage of reinforcement ($A_{\text{sc}} + A_{\text{sc+}}$)/ $A_{\text{c}} \times 100\%$ Percentage of reinforcement $A_{\text{sc}} = 12 \text{mm}$ oK Percentage of reinforcement $A_{\text{sc}} = 12 \text{mm}$ oK Rectangular col bar pitch ($> 75 \text{mm} + \phi$, $> 100 \text{mm} + \phi$ if T40; $< = 300$ Rectangular col bar pitch = $[(b \text{ or h}) - 2.\text{cover}_{\text{main}} - \phi]/(n_{\text{l}}/(2.n_{\text{layers}}) - 1)$ Circular col bar pitch = π .(D-2.cover _{main} - ϕ)/ n_{l} Note an allowance has been made for laps in the min pitch by increasing the criteria by the bar diameter. Min link diameter, ϕ_{link} ($>= 0.25\phi$; $>= 6 \text{mm}$ NSC; $>= 10 \text{mm}$ oK Max link pitch, S Max link pitch, S Require an overall enclosing link. Require additional restraining links for each alternate longitudinal bar in each direction.
Min dimension (to facilitate concreting $>= 125 \text{mm}$) Min longitudinal steel reinforcement number, n_{l} ($>= 4$ rectangular; $>= 6$ circul Min longitudinal steel reinforcement diameter, ϕ ($>= 12 \text{mm}$ column Percentage of reinforcement ($A_{\text{sc}} + A_{\text{sc+}}$)/ $A_{\text{c}} \times 100\%$ Percentage of reinforcement $A_{\text{sc}} = 12 \text{mm}$ oK Percentage of reinforcement $A_{\text{sc}} = 12 \text{mm}$ oK Rectangular col bar pitch ($> 75 \text{mm} + \phi$, $> 100 \text{mm} + \phi$ if T40; $< = 300$ Rectangular col bar pitch = $[(b \text{ or h}) - 2.\text{cover}_{\text{main}} - \phi]/(n_{\text{l}}/(2.n_{\text{layers}}) - 1)$ Circular col bar pitch = π .(D-2.cover _{main} - ϕ)/ n_{l} Note an allowance has been made for laps in the min pitch by increasing the criteria by the bar diameter. Min link diameter, ϕ_{link} ($>= 0.25\phi$; $>= 6 \text{mm}$ NSC; $>= 10 \text{mm}$ oK Max link pitch, S Max link pitch, S Require an overall enclosing link. Require additional restraining links for each alternate longitudinal bar in each direction.
Min longitudinal steel reinforcement number, n_l (>= 4 rectangular; >=6 circul Min longitudinal steel reinforcement diameter, ϕ (>=12mm column Wall 10 mm OK Percentage of reinforcement ($A_{sc}+A_{sc+}$)/ A_c x 100% 0.41 % OK Percentage of reinforcement A_{sc}/A_c x 100% (>0.40%, [0.40+0.01(f_{cu} -60)]% and <5.00%) TR49 cl.3. Longitudinal steel reinforcement pitch (>75mm+ ϕ , >100mm+ ϕ if T40; <=300 261 mm OK Rectangular col bar pitch = [(b or h)-2.cover _{main} - ϕ]/(n_l /($2.n_{layers}$)-1 261 mm OK Circular col bar pitch = π .(D-2.cover _{main} - ϕ)/ n_l N/A mm Note an allowance has been made for laps in the min pitch by increasing the criteria by the bar diameter. Min link diameter, ϕ_{link} (>=0.25 ϕ ; >=6mm NSC; >=10mm HSC) 10 mm OK Max link pitch, S (<=12 ϕ NSC, <=10 ϕ HSC, <=24 ϕ_{link} HSC, <=300mm, <= 120 mm Require an overall enclosing link.
Min longitudinal steel reinforcement diameter, ϕ (>=12mm column
Percentage of reinforcement $(A_{sc}+A_{sc+})/A_c \times 100\%$ 0.41 % 0K Percentage of reinforcement $A_{sc}/A_c \times 100\%$ (>0.40%, $[0.40+0.01(f_{cu}-60)]\%$ and <5.00%) TR49 cl.3. Longitudinal steel reinforcement pitch (>75mm+ ϕ , >100mm+ ϕ if T40; <=300 261 mm 0K Rectangular col bar pitch = $[(b \text{ or h})-2.\text{cover}_{\text{main}}-\phi]/(n_l/(2.n_{\text{layers}})-1)$ 261 mm (Note b or h depending on equivalent single axis of bending, for rect only) Circular col bar pitch = $\pi.(D-2.\text{cover}_{\text{main}}-\phi)/n_l$ N/A mm Note an allowance has been made for laps in the min pitch by increasing the criteria by the bar diameter. Min link diameter, ϕ_{link} (>=0.25 ϕ ; >=6mm NSC; >=10mm HSC) 10 mm 0K Max link pitch, S 120 mm 0K Require an overall enclosing link. Require additional restraining links for each alternate longitudinal bar in each direction.
Percentage of reinforcement $A_{sc}/A_c \times 100\%$ (>0.40%, [0.40+0.01(f_{cu} -60)]% and <5.00%) Longitudinal steel reinforcement pitch (>75mm+ ϕ , >100mm+ ϕ if T40; <=300 Rectangular col bar pitch = [(b or h)-2.cover _{main} - ϕ]/(n _i /(2.n _{layers})-1) (Note b or h depending on equivalent single axis of bending, for rect only) Circular col bar pitch = π .(D-2.cover _{main} - ϕ)/n _l Note an allowance has been made for laps in the min pitch by increasing the criteria by the bar diameter. Min link diameter, ϕ _{link} (>=0.25 ϕ ; >=6mm NSC; >=10mm HSC) Max link pitch, S 10 mm OK Max link pitch, S (<=12 ϕ NSC, <=10 ϕ HSC, <=24 ϕ _{link} HSC, <=300mm, <= 120 mm Require an overall enclosing link. Require additional restraining links for each alternate longitudinal bar in each direction.
Longitudinal steel reinforcement pitch (>75mm+ ϕ , >100mm+ ϕ if T40; <=300 Rectangular col bar pitch = [(b or h)-2.cover _{main} - ϕ]/(n _i /(2.n _{layers})-1) 261 mm (Note b or h depending on equivalent single axis of bending, for rect only) Circular col bar pitch = π .(D-2.cover _{main} - ϕ)/n _l N/A mm Note an allowance has been made for laps in the min pitch by increasing the criteria by the bar diameter. Min link diameter, ϕ _{link} (>=0.25 ϕ ; >=6mm NSC; >=10mm HSC) 10 mm OK Max link pitch, S 120 mm OK Require an overall enclosing link. Require additional restraining links for each alternate longitudinal bar in each direction.
Rectangular col bar pitch = $[(b \text{ or h})-2.\text{cover}_{\text{main}}-\phi]/(n_l/(2.n_{\text{layers}})-1)$ 261 mm (Note b or h depending on equivalent single axis of bending, for rect only) Circular col bar pitch = π .(D-2.cover _{main} - ϕ)/ n_l N/A mm Note an allowance has been made for laps in the min pitch by increasing the criteria by the bar diameter. Min link diameter, ϕ_{link} (>=0.25 ϕ ; >=6mm NSC; >=10mm HSC) 10 mm OK Max link pitch, S 120 mm OK Max link pitch, S (<=12 ϕ NSC, <=10 ϕ HSC, <=24 ϕ_{link} HSC, <=300mm, <= 120 mm Require an overall enclosing link. Require additional restraining links for each alternate longitudinal bar in each direction.
(Note b or h depending on equivalent single axis of bending, for rect only) Circular col bar pitch = π .(D-2.cover _{main} - ϕ)/n _l Note an allowance has been made for laps in the min pitch by increasing the criteria by the bar diameter. Min link diameter, ϕ_{link} (>=0.25 ϕ ; >=6mm NSC; >=10mm HSC) Max link pitch, S 10 mm OK Max link pitch, S (<=12 ϕ NSC, <=10 ϕ HSC, <=24 ϕ_{link} HSC, <=300mm, <= 120 mm Require an overall enclosing link. Require additional restraining links for each alternate longitudinal bar in each direction.
Circular col bar pitch = π .(D-2.cover _{main} - ϕ)/n _l N/A mm Note an allowance has been made for laps in the min pitch by increasing the criteria by the bar diameter. Min link diameter, ϕ_{link} (>=0.25 ϕ ; >=6mm NSC; >=10mm HSC) Max link pitch, S 10 mm OK Max link pitch, S (<=12 ϕ NSC, <=10 ϕ HSC, <=24 ϕ_{link} HSC, <=300mm, <= 120 mm Require an overall enclosing link. Require additional restraining links for each alternate longitudinal bar in each direction.
Note an allowance has been made for laps in the min pitch by increasing the criteria by the bar diameter. Min link diameter, ϕ_{link} (>=0.25 ϕ ; >=6mm NSC; >=10mm HSC) Max link pitch, S Max link pitch, S (<=12 ϕ NSC, <=10 ϕ HSC, <=24 ϕ_{link} HSC, <=300mm, <= Require an overall enclosing link. Require additional restraining links for each alternate longitudinal bar in each direction.
Min link diameter, ϕ_{link} (>=0.25 ϕ ; >=6mm NSC; >=10mm HSC) Max link pitch, S Max link pitch, S (<=12 ϕ NSC, <=10 ϕ HSC, <=24 ϕ_{link} HSC, <=300mm, <= 120 mm Require an overall enclosing link. Require additional restraining links for each alternate longitudinal bar in each direction.
Max link pitch, S
Max link pitch, S ($<=12 \phi$ NSC, $<=10 \phi$ HSC, $<=24 \phi_{link}$ HSC, $<=300$ mm, $<=$ 120 mm Require an overall enclosing link. Require additional restraining links for each alternate longitudinal bar in each direction.
Require an overall enclosing link. Require additional restraining links for each alternate longitudinal bar in each direction.
Require additional restraining links for each alternate longitudinal bar in each direction.
No unrestrained bar should be further than 150mm clear distance from a restrained bar.
2 Low than 150 mm
Long data 170 mm / Coronar man 170 mm
Require through slab / beam depth column links in edge and corner columns due to lack of restraint.
Max link pitch, S N/A mm N/A
Max link pitch, S ($<=10 \phi.f_1.f_2.f_3$ HSC, $<=24 \phi_{link}.f_1.f_2.f_3$ HSC) N/A mm McFarland
Axial stress, $N/(f_{cu}.A_c)$ N/A IStructE,
Spacing factor, $f_1 = 0.27(f_{cu}.A_c)/N$ N/A
Spacing factor, $f_2 = \phi_{link}/12$ N/A
Spacing factor, $f_3 = f_{yy}/500$ N/A
Alternate 90° and 135° bends in
a b Alternate 90 and 155 bentos in each layer of links, but must check capacity of 90° bend

CON	SIII TING	Engineerin	a Calculatio	n Shoot		Job No.	Sheet No.		Rev.
		Consulting		ii Sileet		jXXX	;	8	
21(01	TI DE RO		J	T					
						Member/Location			
Job Title		_	forced Con	crete Colum	n BS8110	Drg. Ref. Made by	Data		064
Member De	esign - RC (Jolumn				Made by XX	Date	4/3/2024	
Mothod 1	(Avial For	caı Namin	al Mamani	to for Non-	Continuo	ıs (Precast	·) Floorer	Slandar Ca	<u>BS8110</u>
Method 1	(AXIAI FUI	ce, Nomini	ai Moilleil	15 101 14011-	Continuot	is (FIECasi	.) Floors, s	Jienaer Co	Iulilli Luie
Axial buckl	ing capacity	/ (Fuler) ma	aior plane.	$N_{cap,Euler} = \pi$	 ^{.2} .F. 30.T./ -6	2	4E+07	kN	
Axial buckl	ing capacity	/ (Euler) mi	nor plane.	$N_{cap, Euler} = \pi$	2.E _{c.28} .I _v /l _{ef}	7,X 2 f v	7E+04		
	Elastic mod	dulus of con	crete,	$N_{\text{can Fuler}} = \pi$ $E_{\text{c,28}} = K_{\text{o}} + 0.2$	f _{cu,28}	,,,	32.0		
						.5b.h ³ /12 o	6.3E+12	mm ⁴	
	Cracked se	cond mome	ent of area	minor plane	$e, 0.5I_y = 0$.5h.b ³ /12 o	1.4E+09	mm ⁴	
Axial capad	city utilisation	$on = N/N_{cap}$,Euler				46%		ОК
Method 2	(Axial For	ce; Nomin	al Moment	ts for Non-	Continuou	ıs (Precast	:) Floors; S	Short Colu	mn Crushi
Dawaantaa	-£:£			1000/			0.41	0/	
		ement (A _{sc} -			Λ \		0.41 37966		cl.3.8.4.3
(Note for r	erfect axial	Conditions	N = 0.4	$\frac{40f_{cu}).(A_{sc}+}{45f}$	M _{SC+}) (0.95f -0.4	45f _{cu}).(A _{sc}		KIN	CI.3.0.4.3
Axial capac	city utilisatio	on = N/N_{cap}	rv cap — O.	Cult c	(0.551 y 0.	roi _{cu} /· (/ · sc	79%		ОК
ruman capan	,	т, тар					7070		O.K
,									

	COI	UCTIT	TINC	Engineeri	na Calcul	ation Cha	ot		Job	No.	Sheet I	Vo.		Rev.
				Consultin	_		et		i	XXX		,	9	
	ENG	11112	EKS	Consum										
<u> </u>										er/Location				
	b Title			sign - Re	inforced (Concrete	Column	BS811			In-t-			Ot- 4
Μe	ember [Design	ո - RC C	Column	ı		-		Made b	ру ХХ	Date		4/3/2024	
_	1 1 -	20.60	:-!						0/ 4-1:		6	D: C	• • - •	<u>BS8110</u>
M	etnoa s	3A (A	xiai Fo	rce; Sma	III ASSUN	nea Mom	ients re	or <15	% Adj	acent	Spans	וזוט	erence in	Continuou
Н				allowing for rolumn being			axial load	from the	floor					
H	minedia	ciy abc	ove the w	_	-	-				ŀ				
Н					i-interior col I-edge colur					ŀ				
H				2.00	-corner colu	ımns				ŀ				
IL	but keep	the col	lumns to	constant siz	e for the top	two storey	s.							
Pe	ercentag	je of r	einforce	ement (A	$_{sc}+A_{sc+})/A$	_c x 100%)				0	.41	%	
				$0.35f_{cu}.A_{c}$,-0.35f _{cu})	.(A _{sc} +A	sc+)			332	259	kN	cl.3.8.4.4
A۶	kial capa	icity ι	utilisatio	$n = N/N_c$	ар						90	0%		ОК
Н		Ultima	te resista	nce of brac	ed stocky o	olumns (for	= 35)					1		
Н		_ /GIAIG	,	51 151 160	J.Jony (\vdash		
Н			size & <u>brac</u>	<u>ed . clear</u> stor	ey height lim	it (mm)	Area of section	p=1% (kN)	p=2% (kN)	p=3% (kN)	p=4%* (kN)			
H	< 353		< 4411	< 5294	< 6176	< 7059	(mm²x 10³)		, ,	, ,				
H	200 x 4 200 x 5	25 2	50 x 360 50 x 420	300 x 300 300 x 350			90 105	1369 1597	1635 1908	1901 2218	2168 2529			
H	200 x 6 200 x 7	00 2	50 x 490 50 x 560	300 x 410 300 x 470	350 x 350 350 x 400		122.5 140	1863 2129	2225 2543	2588 2958	2950 3372	\vdash		
H	200 x 8 200 x 9	00 2	50 x 640 50 x 720	300 x 540 300 x 600	350 x 460 350 x 520	400 x 400 400 x 450	160 180	2433 2737	2907 3270	3380 3803	3854 4335			
	200 x10 200 x12	200 2	50 x 800 50 x 960	300 x 670 300 x 800	350 x 575 350 x 690	400 x 500 400 x 600	200 240	3041 3650	3633 4360	4225 5070	4817 5781			
Į				ased on 4% r										
				can be carrie d from Table 5					reinforcen	nent				
Ц	recessary.													
Ц			Ta	ible 5 Ultimo	ate loads fo	or stocky co	olumns			_ _				
Н	Column		Cross-section		1%	p = 2%	p = 3 kN		p = 4% kN	$\neg \vdash$				
H	size* mm x mm		area, mn	n- ,	N	kN	KIN		KIN	╌╢				
Н	300 x 300		90 000		213	1481 1728	1749 2040		2016 2353					
H	300 x 350 350 x 350 400 x 350		105 000 122 500 140 000) 1	615 551 387	2016 2304	2380 2720	j	2745 3137					
H	400 x 400		160 000		156	2633	3109		3585					
	*Provided If	nat the sm	allest dimensio	on is not less than	200mm, arry shap	ce giving an equi	valent area n	nay be used.						
L														
М	ethod 3	BB (A	xial Fo	rce; Sma	II Assun	ned Mom	ents; S	Short C	olumn	Crus	hing; A	rup	Scheme D	esign)
Г	Approxi	mate n	nethod fo	or allowing	for momer	ıts: multipl	y the ax	ial load f	rom the	floor				
Ц	immedia	ately al	bove the	column be	ing ∞nsid	ered) by:	-							
Н						or columns								
Н					1.50-edge 2.00-corne									
H	hard t						_1							
Η <u>μ</u>	but kee	p the c	orumns	to constant	size for th	ie top two	storeys.				,			
П	Minimur	n colu	mn dime	nsions for	'stocky', br	aced colur	mn = cle	ar heigh	t / 17.7					
			where f _{ou}	= 35 N/mr	n ² and f _y =	460 N/mm	n ² is as f	ollows (N	l is axia	l force i	n			
Ц	Newtons	s):-												
Ц						Area = N/								
Ц						Area = N/2 Area = N/2								
┞┖					1							<u> </u>		
\vdash														
					+									
					+									

	CO	NICI	III TI	NC	F:			Caland	l !	Ch					Job N	0.	She	et No.		Rev.	
F	ENG	I N	ULTII E E I	RS	Engi Cons	neer sultir	ing ig E	Caicui	iatio ers	n Sn	ieet				jΧ>	〈Χ		1	10		
				-											Member/L					<u> </u>	
Job	Title	M	lembe	r De	sign	- Re	einfo	orced	Cond	crete	Col	umı	n BS	8110	Drg. Ref.		[
			ign - F												Made by	XX	Date		4/3/2024		
													<u> </u>				<u> </u>			<u>BS8</u>	
ме	tnoa	3C	(Ахіа	I FO	rce;	Sm	all A	Assun	nea	Mor	nen	its;	Sno	rt Co	lumn (Crusi	ning	; Econ	omic Conc	rete S	cner
		800		Г					1	$\overline{}$			1				nte	erna	l columi	าร	
				ļ				1	! :::							F					
				 	-+-				+					+		$\ \ \ $					
-		700											1% C	35	/						
				<u> </u>					<u> </u>	<u>t-</u>			2% C	35							
		600			+	_			-				3% C	25							
				ļ	#			1	12		Z		1								
				 	-+-			/	ĺ٦	4			4% C	35							
		500					,	4	1		/		-								
								//		1											
\vdash		400			+	-4	/		1	-			+			\vdash					
				ļ	12	7		1	#==				#			\vdash					
	_			ł <i>;</i>	H	//			+				-+-								
	SIZE, mm square	300		7	1/																
-	E			1						<u></u>			+-			\vdash					
	2171	200	0 10	000	2000	300	0 4	1000 5	6000	6000	70	00	8000	9000	10000						
															CIA.D. N. K	н					
	5.0				_			8T40		T		$\overline{}$	T								
			4T32		4T40	\			1				\bigvee								
	4.0		\	$ \sqrt{} $		/		eg					Τ,	$\overline{}$							
	3.0				\setminus	<u>\</u>	\rightarrow	_	_	\perp			\perp	12T4	8						
			4125	\setminus	•				8132	\downarrow			1								
	2.0	4	120				\rightarrow			+	_	-	+	12132	_						
	EMOTORC		4T16	\searrow				8	T25	+	-										
	THE BUTTAGE AS		4110	_		***	•			+			1								
	0.0																				
		200		30	0		40	0		500			econtrol CCOLLUNA	SV SIZE, m	700 m square						
							T														
							+					+					_				
							+					+									
							\perp					\perp									
							+													<u> </u>	
				+			+					+									
				_			\perp														
				+			+					+									
				+			+														
							\perp					1									
							+					+									
							+														
															1						

	SULTING	Engineeri	ng Calculatio	n Sheet		Job No.	Sheet No.		Rev.
	NEERS	_	_	5.1666		jXXX	1	3	
						Member/Location			
lab Titla	Mambar D	osian Doi	nforced Con-	croto Colun	nn PC0110	Drg. Ref.			
ob Title			nforced Con	crete Colum	IIII B28110	Made by XX	Date	4/2/202/	Chd.
Member D	esign - RC (Joiumn				Made 2) XX		4/3/2024	_
Mothod 4	(Avial For	ce: Desig	⊔ n Biaxial M	oments: S	hort Colur	nn Cruchin	a or Sland	ler Colum	<u>BS8110</u> n Imperf
	-		or (b and b'						
Note Wile	re relevant	(II alla II)	Ur (b'aria b') ucperium		inche single t	IXIS OF DEFI	ing, for re	
Depth to c	ompression	steel, h.'	= (h or b for	rect. D for	 r circ) - (h' (or b')	40	mm	
Area of se			(0. 0 .0.				1500000		
							1500000		
 Ratio (h' o	r b')/(h or b	o) (rect) or	(h'-h _c ')/D (d	circ)			0.73		
	f concrete,			,				N/mm ²	
	gth of longi		el, f _v					N/mm ²	
			r ratio N/D ²					N/mm ²	
			b ²) or circula	r ratio M/D) ³			N/mm²	
	, ,			•				,	
Perform ite	eration					Design ((Itera			
						Tuera	dive)		
			il the two A _s	expression	equal, x		151	mm	
	$n, \epsilon_s = -\epsilon_{cu}$ (()/x				0.00095		
Steel strai	n , $\varepsilon_{sc} = \varepsilon_{cu}$ (x-h _c ')/x					0.00257		
	For f	60 N/m	n^2 , $\varepsilon_{cu} = 0.0$	035	I	<u> </u>			BC2
	. 01 100		, c _{cu} - 0.0						cl.2.5.3
	For f _{cu} >	- 60 N/mi	m^2 , $\varepsilon_{cu} = 0.0$	0035 - (f _{cu}	- 60)/5000	00			cl.2.5.3
								2	
			0/1.05 (G46	0) or 250/	1.05 (G250))		N/mm ²	
	ic modulus,						205000		1
			yield streng					N/mm ²	
Steel stres	$SS, \Gamma_{SC} = E_{S}.\epsilon$	_{sc} (< aesig	n yield stren	gtn) - 0.45	or _{cu}		411	N/mm ²	
	Dootonou	la.							
	Rectangu	lar 							+
	Concrete s	train c-	2.4 × 10-4/-	fcu			0.00152		
	Concrete 3		2.4 × 10 /-	7 _m			0.00132		
		0.45	, ,	- \					
	Factor, k ₁	0.457	ευ (ε	<u>= 0</u>	= k 1		23.1	N/mm ²	
	, 1	ε _c	, \	3 /				14,11111	
	Factor, k ₂	(2 -	$\epsilon_0 / \epsilon_{cu}$) ³ $(3 - \epsilon_0 / \epsilon_{cu})$	+ 2	= k ₂		0.434		
		L 4	$(3 - \epsilon_0 / \epsilon_0)$	۱)					
	Four 6	. CO N /	2 - 0.0	005					BC2
	FOR T _{cu} ≤	60 N/mr	n^2 , $\varepsilon_{cu} = 0.0$	0035					cl.2.5.3
	For f >	60 N/mi	m², $\varepsilon_{\rm cu}=0.0$	0035 - (f	- 60)/5000	00			cl.2.5.3
	eu	,	- cu	v.cu	-,,				
	$A_s = [N-k_1$	· · · · · ·					-8014		NOT O
			.(0.5(h or b)				14122		NOT O
			age(A_s), 0.40	$0\%A_c$) if so	In; from int	eraction cha		mm ²	
	100A _{sc,req} /A	A _c					0.40	%	
	Circular								
	F		<u> </u>					2	
	From inter		TS, A _{sc,req}		-			mm ²	N/A
	100A _{sc,req} /A	A c ∣					N/A	%0	1
ron of law	oitudine!	ool roinfo	comont ====	irod (v.c.i-	ial bandin -	\ \ \		2	1
			cement requ			,1	6000		
uea of lof			cement prov	iueu (unia)	kiai beliaing), A _{SC}		mm ²	-01/
		UII - A.s. ***	/ H _{SC}		1	1	98%	1	ОК
Axial capa						Heer B	ofined		
xial capa	ice of intera					User D	efined		

CON	SULTING	Enginoorin	a Calculatio	n Choot		Job No.	Sheet No.		Rev.
	NEERS			iii Sileet		jXXX	1	4	
					Member/Location				
Job Title	Member De	esign - Rein	forced Con	nn BS8110	Drg. Ref.				
Member D	esign - RC (Column				Made by XX	Date	4/3/2024	Chd.
	<u>BS</u>								
Scheme D	Design								

Tables 2.21 to 2.23 may be used for initial sizing. This is a summary of the data contained in $Economic concrete frame elements^{[2]}$ and should be used with the following cautions:

- Loads are ultimate loads in kN.
- Internal columns are assumed to support slabs or beams of similar spans in each orthogonal direction.
- Imposed moments on edge and corner columns have been assumed; for imposed loads greater than 5.0 kN/m² alternative justification is required.
- Columns are 'short' and 'braced'.

Concrete columns can be concealed within partitions by using 'blade' columns. Often a 200×800 mm section is used because 200 mm is a practical minimum thickness and 800 mm is four times the thickness, which classifies it as a wall. For fire resistance this reduces the cover requirements compared with a column.

Table 2.21 Initial sizing for internal square columns (mm)

reinforcement	1000	1500	2000	3000	4000	5000	6000	8000	10000
1.0%	240	295	345	420	485	540	595	685	765
2.0%	225	270	310	380	440	490	540	620	695
3.0%	225	250	285	350	405	455	500	570	640
4.0%	225	230	270	330	380	425	465	535	595

Table 2.22 Initial sizing for square edge columns (mm)

	Ultimate axial load, kN (3% rebar, class C28/35 concrete)								
	400	800	1200	1600	2000	3000	4000	5000	6000
2 storeys	230	305	380	450	505				
3 storeys	225	235	280	340	400	505	575		
4 storeys	225	225	260	305	345	435	505	555	
6 storeys	225	225	250	280	315	395	455	515	560

Initial sizing for square corner columns (mm)

	Ultimate axial load, kN (3% rebar, class C28/35 concrete)									
	200	400	600	800	1000	1200	1600	2000	3000	
2 storeys	265	315	410	485	555	-	-	-	-	
3 storeys	245	255	305	375	435	485	574	-	-	
4 storeys	245	235	270	300	360	410	490	559	-	
6 storeys	240	225	225	240	275	315	385	450	569	