




| CONSULTING <br> ENGINEERS |  | Engineering Calculation Sheet Consulting Engineers |  |  |  | Job No. | Sheet No. |  | Rev. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | jXXX |  | 5 |  |
|  |  |  |  |  |  |  |  |  |  | Member/Location |  |  |  |
| Job Title | Member Design - Steel BeamColumn BS5950 v2015.01 |  |  |  |  | Drg. Ref. |  |  |  |
| Member Design - Steel BeamColumn |  |  |  |  |  | Made by $\quad \mathbf{X X}$ | Date $\mathbf{2 1 / 1 1 / 2 0 2 1}{ }^{\text {chd. }}$ |  |  |
| General Section Properties |  |  |  |  |  |  |  |  | BS5950 |
|  |  |  |  |  |  |  |  |  |  |
|  | Total depth, $\mathrm{D}=$ |  |  |  |  |  | 393.6 | mm |  |
|  | Web thickness, $\mathbf{t}=$ |  |  |  |  |  | 22.6 | mm |  |
|  | Flange width, B = |  |  |  |  |  | 399.0 | mm |  |
|  | Flange thickness, $\mathbf{T}=$ |  |  |  |  |  | 36.5 | mm |  |
|  | Root radius, $\mathbf{r}_{\mathbf{i}}=$ |  |  |  |  |  | 15.2 | mm |  |
|  |  |  |  |  |  |  |  |  |  |
|  | Rolled I b/T ratio = |  |  |  |  |  | 5.5 |  |  |
|  | Rolled I d/t ratio = |  |  |  |  |  | 12.8 |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  | Gross area of section, $\mathbf{A g}_{\mathbf{g}}=$ |  |  |  |  |  | 366.0 | $\mathrm{cm}^{2}$ |  |
|  | Second moment of area about $x-x$ axis, $I_{x}=$ |  |  |  |  |  | 99875 | $\mathrm{cm}^{4}$ |  |
|  | Second moment of area about $y$-y axis, $I_{y}=$ |  |  |  |  |  | 38677 | $\mathrm{cm}^{4}$ |  |
|  | Second moment of area about major axis, $\mathrm{I}_{\mathrm{u}}=$ |  |  |  |  |  | N/A | $\mathrm{cm}^{4}$ |  |
|  | Second moment of area about minor axis, $I_{v}=$ |  |  |  |  |  | N/A | $\mathrm{cm}^{4}$ |  |
|  | Radius of gyration about $\mathbf{x}$-x axis, $\mathbf{r}_{\mathbf{x}}=$ |  |  |  |  |  | 16.5 | cm |  |
|  | Radius of gyration about $\mathbf{y}$ - $\mathbf{y}$ axis, $\mathrm{r}_{\mathrm{y}}=$ |  |  |  |  |  | 10.3 | cm |  |
|  | Radius of gyration about major axis, $\mathbf{r}_{u}=$ |  |  |  |  |  | N/A | cm |  |
|  | Radius of gyration about minor axis, $\mathbf{r}_{\mathbf{v}}=$ |  |  |  |  |  | N/A | cm |  |
|  | Elastic modulus about $\mathbf{x - x}$ axis, $\mathrm{Z}_{\mathrm{x}}=$ |  |  |  |  |  | 5075 | $\mathrm{cm}^{3}$ |  |
|  | Elastic modulus about $y$ - $y$ axis, $\mathrm{Z}_{\mathrm{y}}=$ |  |  |  |  |  | 1939 | $\mathrm{cm}^{3}$ |  |
|  | Plastic modulus about $\mathrm{x}-\mathrm{x}$ axis, $\mathrm{s}_{\mathrm{x}}=$ |  |  |  |  |  | 5812 | $\mathrm{cm}^{3}$ |  |
|  | Plastic modulus about $\mathbf{y}-\mathrm{y}$ axis, $s_{\mathbf{y}}=$ |  |  |  |  |  | 2949 | $\mathrm{cm}^{3}$ |  |
|  |  |  |  |  |  |  |  |  |  |
|  | Buckling parameter, $\mathbf{u}=$ |  |  |  |  |  | 0.835 |  |  |
|  | Torsional index, $\mathrm{x}=$ |  |  |  |  |  | 10.2 |  |  |
|  | Torsional constant, $\mathbf{J}=$ |  |  |  |  |  | 1441 | $\mathrm{cm}^{4}$ |  |
|  | Warping constant, $\mathrm{H}=$ |  |  |  |  |  | 12.3 | $\mathrm{dm}^{6}$ |  |
|  | Monosymmetric index, $\psi=$ |  |  |  |  |  | N/A |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  | $K_{\mathrm{e}}=(1.2$ for G43, $\mathbf{1 . 1}$ for G50, 1.0 for G55) $=$ |  |  |  |  |  | 1.2 |  | 3.4.2 |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |















CONSULTING Engineering Calculation Sheet ENGINEERSConsulting Engineers



CONSULTING Engineering Calculation Sheet ENGINEERSConsulting Engineers

| Job No. | Sheet No. | Rev. |
| :---: | :---: | :---: | :--- |
| jXXX | 21 |  |
| Member/Location |  |  |
|  | Drg. Ref. |  |
|  |  |  |



> | Minor axis slenderness, $\lambda=\mathbf{L}_{\mathbf{E}, \mathrm{LTB}} / \mathbf{r}_{\mathbf{y}, \text { relevant }}=$ |  |
| :---: | :---: |
|  | Effective unrestrained length, $L_{E, L T B}=$ | $\beta_{w}=1$ (compact) or $\beta_{w}=Z_{x}$, relevant $/ s_{x}$, relevant (semi compact)

| $\mathbf{4 6 . 6}$ |  |  |
| :---: | :--- | :---: |
| 4.797 | m | 4.3 .5 |
| $\mathbf{1 . 0 0 0}$ |  | 4.3 .6 .9 |
|  |  |  |
| $\mathbf{3 2 . 5}$ |  | 4.3 .6 .7 |
| 0.835 |  | 4.3 .6 .8 |
| 10.2 |  | 4.3 .6 .8 |
| 4.57 |  |  |
| 0.837 |  | 4.3 .6 .7 |
|  |  |  |
| $\mathbf{N} / \mathbf{A}$ |  | B.2.6 |
|  |  |  |
| N/A |  | $B .2 .6$ |






| CONSULTING <br> ENGINEERS |  | Engineering Calculation Sheet Consulting Engineers |  |  | Job No. | Sheet No. |  | Rev. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | jXXX | 2 | 5 |  |
|  |  |  |  |  |  |  |  | Member/Location |  |  |  |
| Job Title | Member Design - Steel BeamColumn BS5950 v2015.01 |  |  |  | Drg. Ref. |  |  |  |
| Member Design - Steel BeamColumn |  |  |  |  | Made by $\mathbf{X X}$ | ${ }^{\text {Date }}$ 21/11/2021 ${ }^{\text {chd. }}$ |  |  |
| Bending Deflection in Y-plane (Under Unfactored Live Load Only) |  |  |  |  |  |  |  | BS5950 |
|  | Support for deflections = |  |  |  |  |  |  |  |
|  |  |  |  |  | Simply supported |  |  |  |
|  | Uniformly distributed unfactored live load, $\omega_{\text {LL }}=$ |  |  |  |  | 0.0 | kN/m |  |
|  |  |  |  |  |  |  |  |  |
|  | Deflection | , $\delta_{\text {LL }}=$ |  |  |  | 0.0 | mm |  |
|  |  | Simply supported |  | $\delta_{L L}=5 \omega_{L L} L^{4} / 384 E I_{X, \text { relevant }}=$ |  | 0.0 | mm |  |
|  |  | Cantilever |  | $\delta_{L L}=\omega_{L L} L^{4} / 8 E I_{X, \text { relevant }}=$ |  | 0.0 | mm |  |
|  |  | Continuous |  | $\delta_{L L}=\omega_{L L} L^{4} / 384 E I_{X, \text { relevant }}=$ |  | 0.0 | mm |  |
|  |  | Continuous end span |  | $\delta_{L L}=\omega_{L L} L^{4} / 185 E I_{x, \text { relevant }}=$ |  | 0.0 | mm |  |
|  |  |  |  |  |  |  |  |  |
|  | Max deflection limit = |  |  |  |  | 8.9 | mm | 2.5.2 |
|  |  | Simply supported |  | span $/ 360=$ |  | 8.9 | mm |  |
|  |  | Cantilever |  | span / 180= |  | 17.8 | mm |  |
|  |  | Continuous |  | span / 360 = |  | 8.9 | mm |  |
|  |  | Continuous end span |  | span / 360 = |  | 8.9 | mm |  |
|  |  |  |  |  |  |  |  |  |
|  | Deflection utilisation $=\delta_{\text {LL }} / \mathbf{m a x}$ deflection limit $=$ |  |  |  |  | 0.000 |  | OK |
|  |  |  |  |  |  |  |  |  |
| Bending Deflection in Y-plane (Under SLS Load) |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  | Support for deflections = |  |  |  | Simply | supported |  |  |
|  | Uniformly distributed SLS load, $\omega_{\text {SLS }}=$ |  |  |  |  | 0.0 | kN/m |  |
|  |  |  |  |  |  |  |  |  |
|  | Deflection | n, $\delta_{\text {sts }}=$ |  |  |  | 0.0 | mm |  |
|  |  | Simply supported |  | $\delta_{S L S}=5 \omega_{S L S} L^{4} / 384 E I_{X, \text { relevant }}=$ |  | 0.0 | mm |  |
|  |  | Cantilever |  | $\delta_{S L S}=\omega_{S L S} L^{4} / 8 E I_{X, \text { relevant }}=$ |  | 0.0 | mm |  |
|  |  |  |  | $\delta_{S L S}=\omega_{S L S} L^{4} / 384 E I_{X, \text { relevant }}=$ |  | 0.0 | mm |  |
|  |  | Continuous end span |  | $\delta_{S L S}=\omega_{\text {SLS }} L^{4} / 185 E I_{X, \text { relevant }}=$ |  | 0.0 | mm |  |
|  |  |  |  |  |  |  |  |  |
|  | Percentage of dead and superimposed dead load deflection precam |  |  |  |  | 0.0 | \% |  |
|  | Dead and superimposed dead load deflection precamber, \%\| |  |  |  |  | 0.0 | mm |  |
|  |  |  |  |  |  |  |  |  |
|  | Deflection with precamber incorporated, $\delta_{\text {sLs }}$ - \%pcam . ( $\delta_{\text {sLs }}$ |  |  |  |  | 0.0 | mm |  |
|  |  |  |  |  |  |  |  |  |
|  | Max deflection limit = |  |  |  |  | 12.8 | mm | 2.5.2 |
|  |  | Simply supported |  | span / $250=$ |  | 12.8 | mm |  |
|  |  | Cantilever |  | span / 125 = |  | 25.6 | mm |  |
|  |  | Continuous |  |  | span / $250=$ | 12.8 | mm |  |
|  |  | Continuous end span |  | span / 250 = |  | 12.8 | mm |  |
|  |  |  |  |  |  |  |  |  |
|  | Deflection utilisation $=\delta_{\text {sLs }} / \mathbf{m a x}$ deflection limit $=$ |  |  |  |  | 0.000 |  | OK |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |



| CONSULTING <br> ENGINEERS |  | Engineering Calculation Sheet Consulting Engineers |  |  |  | Job No. | Sheet No. |  | Rev. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | jXXX | 26 |  |  |
|  |  |  |  |  |  |  |  |  | MemberLLocation |  |  |  |
| Job Title | Member Design - Steel BeamColumn BS5950 v2015.01 |  |  |  |  | Drg. Ref. |  |  |  |
| Member Design - Steel BeamColumn |  |  |  |  |  | Made by $\quad \mathbf{X X}$ | ${ }^{\text {Date }}$ 21/11/2021 ${ }^{\text {chd. }}$ |  |  |
| Web Bearing and Buckling |  |  |  |  |  |  |  |  | BS5950 |
|  |  |  |  |  |  |  |  |  |  |
|  | Applicability of check for particular section ? |  |  |  |  | Applicable |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  | Local compressive force, $\mathrm{F}_{\mathrm{x}}=\mathbf{V}_{\mathbf{x}}=$ |  |  |  |  |  | 0 | kN |  |
|  | Note $F_{x}$ is the reaction or shear force at the supports of simply supported beams, externally |  |  |  |  |  |  |  |  |
|  | applied loads or the reaction (not shear force) at internal supports of continuous beams; |  |  |  |  |  |  |  |  |
|  | Unstiffened web bearing and buckling capacity utilisation = |  |  |  |  |  | 0.000 |  | OK |
|  | Stiffened web bearing and buckling capacity utilisation = |  |  |  |  |  | 0.000 |  | OK |
|  |  |  |  |  |  |  |  |  |  |
|  | Web stiffener steel grade (usually grade 43) = |  |  |  |  | S275 (43) |  |  |  |
|  | Web stiffener design strength, $\mathrm{p}_{\mathrm{ys}}=$ |  |  |  |  |  | 265 | $\mathrm{N} / \mathrm{mm}^{2}$ |  |
|  |  |  |  |  |  |  |  |  |  |
|  | Section Type |  | $\mathrm{N}_{1}$ | $\mathrm{N}_{2}$ |  |  | d |  |  |
|  | Rolled I |  | 1 | 2 | $\mathrm{d}=$ | D-2T-2r ${ }_{\text {i }}=$ | 290.2 | mm |  |
|  | Rolled RHS |  | N/A | N/A |  | D-3or5T $=$ | N/A | mm |  |
|  | Rolled CHS |  | N/A | N/A |  | $\mathrm{N} / \mathrm{A}=$ | N/A | mm |  |
|  | Welded RHS |  | N/A | N/A |  | $\mathrm{d}=\mathrm{D}-2 \mathrm{~T}=$ | N/A | mm |  |
|  |  |  | N/A | N/A |  | $d=D-2 T=$ | N/A | mm |  |
|  | Solid Bar |  | N/A | N/A |  | N/A = | N/A | mm |  |
|  | Plate |  | N/A | N/A |  | $N / A=$ | N/A | mm |  |
|  | Rolled Single Angle |  | N/A | N/A |  | $\mathrm{d}=\mathrm{D}=$ | N/A | mm |  |
|  | Rolled Single Channel |  | N/A | N/A |  | D-2T-2r ${ }_{\text {i }}=$ | N/A | mm |  |
|  | Rolled Single T |  | N/A | N/A |  | $\mathrm{d}=\mathrm{D}=$ | N/A | mm |  |
|  | Rolled Double Angle |  | N/A | N/A |  | $\mathrm{d}=\mathrm{D}=$ | N/A | mm |  |
|  | Rolled Double Channe |  | N/A | N/A |  | D-2T-2r ${ }_{\text {i }}=$ | N/A | mm |  |
|  | Rolled Double T |  | N/A | N/A |  | $\mathrm{d}=\mathrm{D}=$ | N/A | mm |  |
|  |  |  |  |  |  |  |  |  |  |
|  | Number of webs, $\mathbf{N}_{1}=$ |  |  |  |  |  | 1 |  |  |
|  | Number of sides for each web, $\mathbf{N}_{\mathbf{2}}=$ |  |  |  |  |  | 2 |  |  |
|  | Web depth, d = |  |  |  |  |  | 290.2 | mm |  |
|  |  |  |  |  |  |  |  |  |  |
|  | Stiff bearing length (along length of web), $\mathrm{b}_{1}=$ |  |  |  |  |  | 300 | mm |  |
|  | Continuous over bearing or end bearing ? |  |  |  | End bearing |  |  |  |  |
|  |  | Distance, $\mathrm{b}_{\mathrm{e}}=$ |  |  |  |  | 0 | mm |  |
|  |  | Distance, $\mathrm{a}_{\mathrm{e}}=\mathrm{b}_{\mathrm{e}}+\mathrm{b}_{1} / 2=$ |  |  |  |  | 150 | mm |  |
|  | Note $b_{e}$ is the distance from the end of stiff bearing to the nearer member end; |  |  |  |  |  |  |  |  |
|  | Note $a_{e}$ is the distance from the centre of load or reaction to the nearer member end; |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  | Number of web stiffeners, $\mathrm{N}_{\mathrm{s}}=$ |  |  |  |  |  | 3 |  |  |
|  | Note web stiffeners at each cross section is considered as one web stiffener, even if |  |  |  |  |  |  |  |  |
|  | separated by multiple webs and/or multiple sides of webs; |  |  |  |  |  |  |  |  |
|  | Thickness of web stiffener, $\mathrm{t}_{\mathrm{s}}=$ |  |  |  |  |  | 20.0 | mm |  |
|  | Total length of web stiffener per cross section, $\mathrm{b}_{\mathrm{s}}=$ |  |  |  |  |  | 450 | mm |  |
|  | Note for double angles of case 2 and case 3 and for double $T$ sections, $b_{s}$ is doubled; |  |  |  |  |  |  |  |  |
|  | Outstand length of web stiffener, $\mathrm{b}_{\mathrm{s}, \mathrm{o}}=\mathrm{b}_{\mathrm{s}} /\left(\mathrm{N}_{1} \cdot \mathrm{~N}_{2}\right)=$ |  |  |  |  |  | 225 | mm |  |
|  | Outstand of web stiffener length limit utilisation, $\mathbf{b}_{\mathbf{s , o}}$ ( $<=1 \Xi$ |  |  |  |  |  | 0.850 |  | OK |
|  | Note that the effectiveness of the outstand of the stiffener is limited to $13 \mathrm{\varepsilon} t_{s}$; |  |  |  |  |  |  |  | 4.5.1.2 |
|  | Note for channel sections, heel radius reduction factors $K_{b}$ and $K_{w}$ have been ignored; |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |




















| $\begin{array}{r} \text { CONSULTING } \\ \text { ENGINEERS } \end{array}$ |  | Engineering Calculation Sheet Consulting Engineers |  |  |  | $\begin{gathered} \hline \text { Job No. } \\ \hline j X X X \end{gathered}$ | Sheet No. | Rev. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 45 |  |  |
|  |  |  |  |  |  |  | MemberLLocation |  |
| Job Title | Member Design - Steel BeamColumn BS5950 v2015.01 |  |  |  |  | Drg. Ref. |  |  |
| Member Design - Steel BeamColumn |  |  |  |  |  | Made by $\quad \mathbf{X X}$ | Date $21 / 11 / 2021{ }^{\text {chd. }}$ |  |
|  |  |  |  |  |  |  |  | BS5950 |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |


| $\begin{array}{r} \text { CONSULTING } \\ \text { ENGINEERS } \end{array}$ |  | Engineering Calculation Sheet Consulting Engineers |  |  |  | $\begin{gathered} \hline \text { Job No. } \\ \hline j X X X \end{gathered}$ | Sheet No. | Rev. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 46 |  |  |
|  |  |  |  |  |  |  | MemberLLocation |  |
| Job Title | Member Design - Steel BeamColumn BS5950 v2015.01 |  |  |  |  | Drg. Ref. |  |  |
| Member Design - Steel BeamColumn |  |  |  |  |  | ${ }^{\text {Made by }} \mathbf{X X}$ | Date $21 / 11 / 2021{ }^{\text {chd. }}$ |  |
|  |  |  |  |  |  |  |  | BS5950 |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |


| $\begin{array}{r} \text { CONSULTING } \\ \text { ENGINEERS } \end{array}$ |  | Engineering Calculation Sheet Consulting Engineers |  |  |  | $\begin{gathered} \hline \text { Job No. } \\ \hline j X X X \end{gathered}$ | Sheet No. | Rev. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 47 |  |  |
|  |  |  |  |  |  |  | MemberLLocation |  |
| Job Title | Member Design - Steel BeamColumn BS5950 v2015.01 |  |  |  |  | Drg. Ref. |  |  |
| Member Design - Steel BeamColumn |  |  |  |  |  | Made by $\quad \mathbf{X X}$ | Date $21 / 11 / 2021{ }^{\text {chd. }}$ |  |
|  |  |  |  |  |  |  |  | BS5950 |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |



| $\begin{array}{r} \text { CONSULTING } \\ \text { ENGINEERS } \end{array}$ |  | Engineering Calculation Sheet Consulting Engineers |  |  |  | $\begin{gathered} \hline \text { Job No. } \\ \hline j X X X \end{gathered}$ | Sheet No. | Rev. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 49 |  |  |
|  |  |  |  |  |  |  | MemberLLocation |  |
| Job Title | Member Design - Steel BeamColumn BS5950 v2015.01 |  |  |  |  | Drg. Ref. |  |  |
| Member Design - Steel BeamColumn |  |  |  |  |  | Made by $\quad \mathbf{X X}$ | Date $21 / 11 / 2021{ }^{\text {chd. }}$ |  |
|  |  |  |  |  |  |  |  | BS5950 |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

