CO	DNSULTING Eng	aineering Calcu	lation Sheet		Job No.	Sheet No.		Rev.
	$\mathbf{GINEERS}$				jXXX		1	
					Member/Location	1		
ob Title	Member Design	- Steel Compos	site Beam BS59	950 v2015.02.x	lsm ^{Drg.}			
lember Des	ign - Steel Comp	osite Beam			Made by	CX Date	21/11/20)21 ^{Chd.}
ntroductio	on							<u>BS5950</u>
1	Grade 50 more	common than G	Grade 43 becau	ise composite b	eam stiffness			
	often 3 to 4 time	es non composi	te beam, justif	ying use of higi	her working str	esses.		
2	Span to depth (overall beam ar	nd slab depth)	ratios				
	Sin	nply supported	UB 18 to 23					
	Sin	nply supported	UC 22 to 29					
	End	d span of contir	nuous beam 22	to 25				
	Int	ernal span of c	ontinuous bear	n 25 to 30				
3	The direction of							
	Hence usually de					ondary beam)		
	Typical unpropp	· · · · · · · · · · · · · · · · · · ·						
	and 1.7 kPa allo	wance for slab,	services and c	eiling is presen	ted.			
							-	
	Decking	Slab depth	Lightweig	ht concrete	Normal Wei	ght Concrete		
	gauge	(mm)	Simply	0	Simply	Constanting of the		
	0.9 (A142	130	Supported 2.95	Continuous 3.11	Supported 2.78	Continuous 3.03	┩┝───	
	mesh)	150	2.88	3.22	2.66	3.00		
	1.2 (A193 mesh)	130 150	3.20 3.08	3.73 3.62	3.02 2.89	3.55 3.41		
	Design assumes 60	0 minute fire resistar	nce, provided that t	he slab is continious	s (decking need no	tbe)	╧┧────	
4	Typical values o	f modular ratio	for office build	lings are 10 NW	C and 15 I WC.			
	In final state, th			-				
	In construction s				-			
	but the perpend		2 .					
	But although no							
	in the contruction						s.	
6	Note the overall	utilisation does	s not include cr	oss section clas	ssification or sh	ear buckling.		
	If the section is	not at least co	ompact, then	the equations v	vithin the shee	t are NOT vali	d!	
	If the section cla	assification or s	hear buckling ι	utilisations is vie	olated, the ove	rall utilisation	<i>is set at 99</i>	9%.
7	Capacity of com	posite section t	ypically 1.6 to	2.0 times that	of non-compos	ite section.		
	Typical starting	naint						
	Typical starting	point						
	Overall concrete		130mm (Grad	le 30)				
	Depth of profiled Size beam with	l decking Z = (Z for non-c	60mm omposite beam) x E where E =	16-20			
	CHEC DOUNT WITH	_ (2.6.161-0		.,				

CC	ONSULTING	Engineering	Calculation St	neet		Job N	lo.	Shee	t No			Rev.
	GINEERS			leet		j	xxx				2	
						Member	Location					
lob Title	Member Des	ign - Steel Co	mposite Bear	n BS5950 v2	015.02.xlsm	Drg.						
	sign - Steel Co	-	-			Made by	XX	Date		2	1/11/2021	Chd.
Input Para		•										BS5950
•												
Primarv beau	m spacing (=	secondarv be	am span) =					13	.000)	m	
Primary bear		,							500		m	
	eam spacing	usually 3.0 -	3.6m) =						833		m	
	dition for prim		,	Simp	ly Supported					▼		
	dition for seco	· · ·	=	Simp	ly Supported					-		
	on of hogging) =				30)	•	%	
Steel grade		```					S	275 (43)	▼		
5	checked, i.e.	secondary or	primary bean	n =			Secondary	/ Beam		-		
	lepth if simply		,		uB < 722mm			-	591r	nm		
Primary beau						-	5x254x152			•		
, Secondary b						UB 533	8x210x92			-		
,	ea of primary	beam, m _p = 1	mass per met	re / spacing	=			1	1.7		kg/m ²	
	ea of secondar								2.5		kg/m ²	
	ea of structura								4.2		kg/m ²	
•												
Comp strend	gth of concrete	e, f _{cu} (affects	stud cap, ULS	S cap, SLS str	ess criteria;		l/mm² a	s H ³⁵		▼	N/mm ²	ОК
	crete (affects s							l Weigh	nt	-		
Deck type =	-					RUS PM	F COMFLO	DOR 46		-		
Depth of pro	, file decking, [$D_{\rm p}$ (usually 60) mm) =						46		mm	
Depth of slal	b to bottom of	f decking trou	ughs, D _s (usua	ally 130mm)	=			1	.30		mm	
Shear stud d	dimensions (us	sually _∲ = 19r	nm and $h = 1$	L00mm) =	Dia	. 19mm	, Height 1(00mm		-	1	
No. of studs	per section p	rimary beam,	N =	2	and secondar	ry bea	m, N =		2		stud(s)	
	ugh width, b _a							1	32		mm	
	m first stud to								40		mm	
Trough centi	res, t _c (usually	/ 150 - 300m	m, relevant f	or perpendicu	lar decking)	=		2	225		mm	
Along profile	e deck stud pit	ch (relevant	for parallel de	ecking) =				3	300		mm	
	= (0.86 - 1.50	-	1.00		design streng	gth, p.	_{vp} =	2	280		N/mm ²	
r												
Live load (in	cluding partiti	ons), LL =						5	.00		kPa	
Steel deck =								0	.15		kPa	
-looring =								0	.00		kPa	
- -loor topping	g (including in	sulation) =						1	.20		kPa	
Services =		-						1	.50		kPa	
Ceiling =								0	.00		kPa	
-	external facade	e primary bea	am (from load	l on elevation) =				0.0		kN/m	
	external facade				-	1			0.0		, kN/m	
	loading (for o					1			.50		, kPa	ОК
	onstruction (a					Unpro	opped Cor			•		
	of dead and su				-				0.0		%	1
_	edge beam (pr			· · · · · · · · · · · · · · · · · · ·	· · · ·		Interna	al Beam		•	1	1
	edge beam (se							al Beam		•		1
		,, (5	,,	1						1

	CO	NCULT		incoring	Calaulati	an Chao	L			Job	No.	Sheet No).		Rev.
			-	jineering Isulting E			et .				jXXX			3	
	ENG		K B COI		Ingilicers			1			-			5	
											er/Location				
	Title		-		-	Beam E	3S5950 v2	015.02.×	lsm	Drg.		1			4
Mer	nber Desi	ign - Ste	el Compo	osite Beai	m					Made b	^y XX	Date	2	21/11/2021	
															<u>BS5950</u>
	er =											25		mm	
	d strengt			. ,							4	460	•	N/mm ²	
-	nary bear						n =				I	None	▼	mm	
	nary bear		-									200		mm	
	nary bear											0		mm²/m	
	ondary be						, φ _h =				1	None	•	mm	
	ondary be											200		mm	
	ondary be			el area pr								0		mm²/m	
Trai	nsverse r	ebars of	$\phi_t =$		8	m	m at s _t =	200		mm	and $f_y =$	460		N/mm ²	
	British		Lo	ngitudinal Wi	ires		Cross Wires			ninal					
	Standard Fabric		Nominal wire size	Pitch mm	Area mm ²	Nominal wire size		Area mm ²		ass /m²					
	Reference		mm	mm		mm									
	Square Mesh	A 393 A 252	10 8	200 200	393 252	10 8	200 200	393 252		16 95					
		A 193	7	200	193	7	200	193	3.	02					
		A 142 A 98	6 5	200 200	142 98	6 5	200 200	142 98		22 54					
	iti a na latur										1	200		2,	
							hary beam		-			389		$\frac{\text{mm}^2}{2}$	
Add	itional tra	ansverse	reinforce	ement (tr	ansverse		ondary bea	im), area	add =	=		192		mm²/m	
	lication (
υü	isation S	Summar	У												
			oor Stud	Paramete							64%	ОК			
				n Classifi							67%	OK OK			
			ar Buckl								67%	OK OK			
			ear Capa	5							34%	ОК			
	S		•		ection D	oaroo (9	Sagging M	oment)			54%	OK			
	sck			ment Cap			Jagging M				90%	ОК			
	Che			ment Cap	-						N/A	N/A			
	u (-	e Load De								54%	OK		91%	
	Utilisation Checks		d Deflect								91%	OK			
	lisa		crete Sti								25%	OK			
	Uti		el Stress								87%	ОК			
				Shear C	apacity						23%	OK			
				n Sagging		t Capaci	ty				63%	ОК			
				n Hogging							N/A	N/A			
		ULS Tra	nsverse	Reinforce	ment		•				33%	OK			
Dea	d and su	perimpos	sed dead	load defl	ection pr	ecambe	r, DL+SD	L precam	ber	-		0.0		mm	
Pri	mary bea	am utilis	sation s	ummary			Devi				98%	-0804		%	
Sec	ondary	beam ut	tilisatior	n summa	ry		Design	Floor !			91%	98%		70	

((ONSULTING	Engineering	a Calculation	Shoot			Job No.	Sheet No.		Rev.
	GINEERS			JICEL			jXXX		4	
							Member/Location			
ob Title	Member Des	ign - Steel (Composite B	eam BS595) v2015.02.>	xlsm	Drg.			
1ember Des	sign - Steel Co	mposite Be	am				Made by XX	Date	21/11/202	21 ^{Chd.}
Steel Beam	Section									<u>BS5950</u>
Section desc	ription =						ι	B 533x210x	92	
Section mas	s =							92.1	kg/m	
Steel grade	=							S275 (43)		
Strength (fu	nction of stee	grade and	plate thickn	ess), p _y =				275	N/mm ²	
Depth of we	b, d =							476.5	mm	
Pepth of sec	ction, D =							533.1	mm	
lange width	ı, В =							209.3	mm	
Veb thickne	ess, t =							10.1	mm	
lange thick	ness, T =							15.6	mm	
Veb slender	mess, d/t =							47.2		
	lerness, b/T =	:						6.7		
rea of secti	ion, A =							117.0	cm ²	
Second mom	nent of area,	[_x =						55227	cm ⁴	
lastic modu	ılus about x-x	axis, $Z_x =$						2072	cm ³	
lastic modu	ılus about x-x	axis, s _x =						2360	cm ³	
Radius of gy	ration about	/-y axis, r _v :	=					4.5	cm	
Buckling par	ameter, u =							0.872		
orsional inc	-							36.5		
= √(275/p	$(v_v) =$							1.00		
	elasticity, E =							2.05E+05	N/mm ²	
ength of be	am span, L =	:						13000	mm	
affects effe	ctive width, d	eflection est	timates and	criteria, vibi	ation estima	ates				
and construc	ction case def	lection estin	nates and cr	iteria)						
	e length for co							14066	mm	
1.0 x secon	ndary beam sp	an if second	dary beam +	- 2D, 1.0 x s	econdary be	eam s	pacing if prin	hary beam +	2D)	
	e length for co							12116	mm	
	x secondary b				1.0 x 0.85 >	x seco	ondary beam	spacing if pri	imary beam	+ 2D)
Beam spacin	ng =							2833	mm	
	• • • • • •	•		╺╼╸┟╶╺┽╼╶┝		•	• •	•		
									1	1

CC	ONSULTING	Engineering	Colculation Sk	aaat		Job No.	Sheet No.		Rev.
	G I N E E R S			ICEL		jXXX	5	5	
						Member/Location			
Job Title	Member Des	ign - Steel Co	mposite Bear	n BS5950 v2	2015.02.xlsm	Drg.			
Member Des	sign - Steel Co	omposite Bear	n			Made by XX	Date	21/11/2021	Chd.
Slab Param	eters								<u>BS5950</u>
	e strength of c	concrete, f _{cu} =	:				35.0	N/mm ²	
Type of cond							Normal Weigh	1	
Concrete de							24.0	kN/m ³	
	profile sheetir						Perpendicular		
	lar if secondar				<u> </u>				
	l pitch, effecti	ve width and		stage checks		ive width, B _e a	nd B		
. <i>*</i>	E	<i>*</i>	Bı		Lincet	secondary	primary		
b			[][[]]		simply	MIN (L/4,	MIN (L/4,		
Sheur connecto	╷╶╋╸╲╻		<u>× </u>		supported	spacing)	0.8spacing)		
				=	continuous	MIN (0.7L/4,			
	- Second	keyben '	`	Secondary in	sagging	spacing)	0.8spacing)		
					continuous	MIN (0.5L/4,	MIN (0.5L/4,		
SEC	N PERPENDICULAR TO ONDARY BEAM	>	DECK PARALLEL TO PRIMARY BEAM		hogging	spacing)	0.8spacing)		
(Note that th	hese effective	width values	are halved if	edge beam	instead of inte	ernal beam)			
	file decking, [46	mm	
	b to bottom of						130	mm	
	Ith for sagging						2833	mm	
Effective wid	Ith for hogging	g moment, B _e	e,hog =				N/A	mm	
		├		= 2833	├ ─── ▶				
			Be	= : 2833			├		
D. =	46	CON	CRETE				D. =	130	
– p	↑				T T		<u> </u>	130	
			STEEL		D =	533			
					↓ ↓				
LTB Restra	int								
			Deckina	Parallel	Decking P	erpendicular			
	Design sag		_	LTB		LTB			
	Constructio		LLTE	s,SAG	No	LTB			
	Design hog		No	LTB	No) LTB			
	Constructio	n hog	L _{LTB}	,HOG	LLT	rb,hog			
	(Note that in	the design h	og situation,	torsional res	 traint is provi	ded by the wel	b and the conc	rete slab)	
	-							,	

CONSULTING Engineering Calculation Sheet	Job No.	Sheet No.		Rev.
$\mathbf{E} \mathbf{N} \mathbf{G} \mathbf{I} \mathbf{N} \mathbf{E} \mathbf{E} \mathbf{R} \mathbf{S}$ Consulting Engineers	jXXX		6	
	Member/Location			
Job Title Member Design - Steel Composite Beam BS5950 v2015.02.xlsm	Drg.			
Member Design - Steel Composite Beam D55550 V2015.02.Xisin	Made by	Date	21/11/202	Chd.
Shear Stud Parameters	· ^^		21/11/202	<u>BS5950</u>
				<u> </u>
Capacity of 1 shear stud based on property table (ϕ , h, f _{cu}) =		104	kN	
Stud height, h =		104	mm	
Stud Height, H =		100		
Shear stud parameters max utilisation =		64%	mm	ОК
		04%		ÜK
25 mm or 1.250 50 mm 30 h 30 h 40 1.50 0.40 e 15 mm d minimum dimensions unless stoted				
Number of studs per trough, N =		2		
Number of studs per trough utilisation, N (<=2) =		100%		ОК
Height of stud above decking profile, $h-D_p =$		54	mm	
Height of stud above decking profile utilisation, $h-D_p$ (>=35mm) =		65%		ОК
Stud height, h =		100	mm	
Stud height utilisation, h (>= 3ϕ) =		57%		OK
Depth of profile decking, $D_p =$		46	mm	
Depth of profile decking utilisation, D_p (>=35mm, <=80mm) =		76%	-	ОК
Depth of slab excluding profile decking, $D_s - D_p =$		84	mm	
Depth of slab excluding profile decking utilisation, $D_s - D_p$ (>=50mm) =		60%	-	ОК
Depth of slab above shear stud = $D_s - h =$		30	mm	
Depth of slab above shear stud utilisation = $D_s - h (>=15mm) =$		50%	-	ОК
Average trough width, b _a =		132	mm	
Average trough width utilisation, b_a (>=100mm) =		76%		ОК
Steel beam flange thickness utilisation, T >= $\phi/2.5$ for through stud welding =	=	49%	-	ОК
Average trough width, b _a =		132	mm	
Frough centres, t_c (relevant for s_l when decking perpendicular to beam) =		225	mm	
Along profile deck stud pitch (relevant for s_i when decking parallel to beam) =		300	mm	
Longitudinal (with respect to beam) stud pitch, $s_1 =$		225	mm	
ongitudinal stud pitch utilisation, s _l (>=5 ϕ , >=100mm, <=600mm, <=4D _s) =	=	44%		ОК
Distance from first stud to mid level trough width, $e_d =$		40	mm	
Distance from first stud to mid level trough width utilisation, e_d (>25mm, >1.	25¢) =	63%		ОК
Fransverse (with respect to beam) stud pitch, $s_t = (B-2e_d)/(N-1) =$		129	mm	
Fransverse (with respect to beam) stud pitch utilisation, $s_t (>=4\phi) =$		59%		ОК
Distance from stud to edge of flange = $(B - (N-1).s_t - \phi)/2 =$		31	mm	
Distance from stud to edge of flange utilisation (>=20mm) =		66%		ОК

C	ONSULTING	Engineering	Colouiotion Cl	aaat		Job No.	Sheet No.		Rev.
	ONSULTING G I N E E R S			leet		jXXX		7	
						Member/Location			
lob Title	Member Des	ign - Steel Co	mposite Bear	m BS5950 v2	015.02.xlsm	Drg.	1		
Member De	sign - Steel Co	omposite Bear	n			Made by XX	Date	21/11/202	É ^{hd.}
Applied Lo	oading and As	sociated Eff	ects						<u>BS5950</u>
Type of sup	port condition	=				Simp	oly Supporte	d	
Fributary w	idth i.e. beam	spacing (divi	ded by 2 if ed	ge beam), t _w	, =		2.833	m	
Live load (ii	ncluding partiti	ions), LL =					5.00	kPa	
Super dead	load (from pla	an loading), S	DL = tiles + f	floor topping	+ ceiling + se	ervices =	2.70	kPa	
	Flooring =						0.00	kPa	
	Floor topping	g (including in	sulation) =				1.20	kPa	
	Services =						1.50	kPa	
	Ceiling =						0.00	kPa	
	load (from ele						0.0	kN/m	
Dead load,	DL = concrete	-					3.13	kPa	
		$ight = [(D_s - I)]$					2.66	kPa	
		$= m_s \cdot g$ if se	econdary (m _p	+ m _s) . g if p	primary =		0.32	kPa	
	Steel deck =	: 					0.15	kPa	_
	_								
	– Load	Factor	Load (kPa)	Factored load (kPa)	ω _{SLS} (kN/m)	ω _{ULS} (kN/m)			
	LL	1.6	5.0	8.0	14.2	22.7			
	SDL	1.4	2.7	3.8	7.7	10.7			
	DL	1.4	3.1	4.4	8.9	12.4			
	Total		10.8	16.2	30.7	45.8			
			have Net Cha			Envolono	d Moment		
ULS and S	LS Bending M	_	tors Not Sho	own)			1		
	Simply Sup	M _{HOG} =0.0=				SLS	ULS		
			 σ(ω _{DL} +ω _{SDL} +ω _l)11 ² -		0 648	0 967		
	Continuous		$(\omega_{DL} + \omega_{SDL} + \omega_{I})$	<u></u>)]L =		048	907		
		-	 5(ω _{DL} +ω _{SDL})+(125ه 11 ²		648	967		
			$(\omega_{DL} + \omega_{SDL}) + (\omega_{DL} + \omega_{SDL}) + (\omega_{DL}$			425	641		
	Continuous	3 Span (En				125	011		
)(ω _{DL} +ω _{SDL})+(117011^{2}		559	839		
			$(\omega_{DL} + \omega_{SDL}) + (\omega_{DL}) +$			465	700		
	Continuous	3 Span (Int							
)(ω _{DL} +ω _{SDL})+(559	839		
			$(\omega_{DL} + \omega_{SDL}) + 0$			249	385		
	Continuous	4 or More S					_		1
		1	$(\omega_{DL} + \omega_{SDL}) + (\omega_{DL})$			588	882		
			$(\omega_{DL} + \omega_{SDL}) + 0$			454	684		1
	Continuous	4 or More S	0000						1
		1	 /(ω _{DL} +ω _{SDL})+(588	882		1
			$(\omega_{DL} + \omega_{SDL}) + (\omega_{DL} + \omega_{SDL}) + (\omega_{DL}$			294	451		
	(Note for ud	l loads (DL an			nsidered)				
	(Nata fam und	lloads (II) n	atch loading o	considered)	-				

CO	NSULTING	Enginooring	Calculation S	hoot		Job No.	Sheet No.		Rev.
	INEERS			neet		jXXX		8	
						Member/Location			
ob Title	Member Des	ian - Steel Ca	mposite Bear	m BS5950 v2	015.02.xlsm	Drg.			
	ign - Steel Co	-	•			Made by XX	Date	21/11/202	Chd.
									BS5950
JLS hogaina	bending mor	nent, Muis Hor	Elastic =				0	kNm	
	bending mon						967	kNm	
	n of hogging	,	,	ams, RD =			30.0	%	
	bending mor						0	kNm	
	bending mon						967	kNm	
Le bagging					,HOG,Elastic		507	KINIT	
−			0						
-		90							
-			ULS BMDs						
-				—					
SLS hoaaina	bending mon	nent, Marana	· =				0	kNm	
	bending mon						648	kNm	
20 Sugging							0-10	KINITI	
II S Shear I	Force (Facto	rs Not Show	yn)			F	nveloped Sl	lear	
	Simply Sup					-	ULS		
		-	$\omega_{\text{DL}} + \omega_{\text{SDL}} + \omega_{\text{LL}})$	l =			298		
	Continuous						250		
	continuous			25m. 11 =			372		
	Continuous	3 Span (En	-				572		
			u 3ματή _{DL} +ω _{SDL})+0.61	- [7ω.]] =			362		
		3 Span (Int					502		
	continuous		$\omega_{\text{SDL}} + \omega_{\text{SDL}} + 0.58$	3011 –			322		
	Continuous		-				522		
			5pan (End Sp _{0L} +ω _{SDL})+0.62				365		
			Span (Interio						
	Continuous		(1)				220		
		v-[0.330(ω _[$[+\omega_{SDL})+0.00$				339		
JLS shear fo							208	kN	
LS SHEdi TO	$v_{\text{ULS}} =$						298	KIN	
									_
								_	_

C	ONGUL TINC		Calaulatian C	h a a h		Job No.	Sheet No.		Rev.
		Engineering Consulting E		neet		jXXX		9	
EN	GINEEKS	Consulting E	ngineers]^^^		9	
						Member/Location			
Job Title	Member Des	sign - Steel Co	omposite Bear	m BS5950 v2	015.02.xlsm	Drg.			
Member De	sign - Steel C	omposite Bear	m			Made by XX	Date	21/11/202	21 ^{2 hd.}
									<u>BS5950</u>
Unfactored	d Loads								
	infactored), ω						14.2	kN/m	
		(unfactored),					7.7	kN/m	
	-	beam and deck		eu), ω _{DL} =			8.9	kN/m	
SLS load, ω	sls =						30.7	kN/m	
livelese	Bonding Mor	nent for Con	tinuous Pas	m Doflactic	n Calculatia				
LIVE LOAD			inuous bea						
	M ₀ =0.125ω _L	.1 ² =					299	kNm	
	1.10-0.1230	<u></u>					233		
						M1	M ₂		
	Simply Sup	ported					2		
		$M_1 = 0.0 =$				0		kNm	
		M ₂ =0.0=					0	kNm	
	Continuous	-							
		M ₁ =0.0=				0		kNm	
		M ₂ =0.063ω ₁₁	$L^2 =$				151	kNm	
	Continuous	s 3 Span (End	d Span)						
		M ₁ =0.0=				0		kNm	
		M ₂ =0.050ω _{LL}	$L^2 =$				120	kNm	
	Continuous	s 3 Span (Int							
		$M_1 = 0.050 \omega_{LL}$				120		kNm	
		M ₂ =0.050ω _{LL}					120	kNm	
	Continuous	s 4 or More S	pan (End Sp	pan)					
		$M_1 = 0.0 =$				0		kNm	
		M ₂ =0.054ω _{LL}					129	kNm	
	Continuous	s 4 or More S		or Span)					
		M ₂ =0.036ω _{LL}				86		kNm	
		M ₂ =0.054ω _{LL}	-	TA 41 18 2	<u> </u>		129	kNm	
		loading that p				-	-		_
	uniformly lo	aded have bee	en adopted fo	or conservatis	sm in the defi	ection calcula	tions)		
	200	L(N)mo	M –		L(N) ma	M —	•	L(N)mc	
M ₀ =	299	kNm	$M_1 =$		kNm	M ₂ =	0	kNm %	
$\mathbf{M}_{0} =$	on of nogging 299	moment for c	$\mathbf{M_1} =$	ams, RD =	kNm	M ₂ =	30.0 0	kNm	
M ⁰ =	233	KINITI	M ₁ =	U	KINITI	m ₂ =	U	KINITI	
									1

CC	MCLII TINC	En ein e enin e	Calaulatian Cl			Job No.	Sheet No.		Rev.
	ONSULTING G I N E E R S			leet		jXXX	:	10	
						Member/Location			
Job Title	Member Des	ign - Steel Co	mposite Bear	n BS5950 v2	015.02.xlsm	Drg.			
Member Des	sign - Steel Co	omposite Bea	m			Made by XX	Date	21/11/2021	Chd.
									<u>BS5950</u>
ULS Constr	uction Loadi	ing							
Construction	n loading kPa	for construct	ion stage che	cks) -			1.5	kPa	
	truction load,	-			=		4.3	kN/m	
	L of construct						6.8	kN/m	
Factored DL			Construct				12.4	kN/m	
	truction ULS,	() () () () () () () () () () () () () () ($\frac{1}{14\omega_{r}} + 1.6\omega_{r}$	=			19.2	kN/m	
	onstruction =	~ULS,construct -		~construct —		Unpropped	Construction	-	
	ed construction –	n will not pro	duce any con	struction off	ects and vice				
					Shear	Sag	Нод		
					(kN)	(kNm)	(kNm)		
	Simply Sup	norted			125	406	0		
					125	-100	0		
	Continuous	2 Snan			156	257	406		
	Continuous				150	237	100		
	Continuous	3 Span (En	d Snan)		151	284	344		
	continuous				151	204	5++		
	Continuous	3 Span (Int	erior Span)		132	139	344		
	Continuous				152	155	577		
	Continuous	4 or More S	Span (End Sp	an)	153	276	364		
	Continuous				155	270	504		
	Continuous	4 or More S	pan (Interio	r Snan)	140	169	364		
	Continuous				140	109	504		
	(Note calcula	tions based (n previous fa	rmulae but i	tilising const	ruction loadin			
	(Note calcule						<i>gs)</i>		
III S constru	ction hogging	moment M					0	kNm	
UIS constru	ction sagging	moment M	_S,construct,HOG —				0 406	kNm	
	on of hogging			ams RD –			30.0	%	
	ction hogging						0	⁷⁶ kNm	
	ction sag mon	nent Mula	$S, construct, HOG = M_{HIV}$		RD Mula		406	kNm	
		ULS,cons		s,construct,SAG	ULS,constr				
ULS constru	ction shear fo	rce, Vui c anno	 				125	kN	

						Job No.	Sheet No.		Rev.
			Calculation Sl	neet		:>/>/		1.1	
ENG	INEEKS	Consulting E	ngineers			jXXX		11	
						Member/Location			
Job Title	Member Des	ign - Steel Co	mposite Bear	n BS5950 v2	015.02.xlsm	Drg.			
Member Desi	ign - Steel Co	mposite Bear	n			Made by XX	Date	21/11/2021	Chd.
ULS Steel B	eam Cross S	Section Class	sification						<u>BS5950</u>
(At Least Co	ompact Sect	tion)							
Web, d/t (co					47.2 <	100.0	47%		ОК
Flange, b/T (welded) =		6.7 <	10.0	67%		ОК
Section class							67%		ОК
(Note the be	am section m	ust be at lea	st compact fo	r plastic com	oosite beam	equations to	apply)		
ULS Shear (
-	or High Shea								
Rolled I Shea							5384	mm ²	
Welded I She		$_{1} = t(D-2T) =$					N/A	mm ²	
$P_v = 0.6p_y A_v$							888	kN	
Shear capaci						47.0	34%		ОК
Shear bucklin						47.2 <	70.0		
Shear bucklir	ng utilisation	= (d/t) / (/0)	ε or 62 ε) =				67%		ОК
									1

		Job No.	Sheet No.		Rev.
CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers		ivvv		12	
		jXXX		12	
		Member/Location			
Job Title Member Design - Steel Composite Beam BS5950 v	2015.02.xlsm	Drg.			
Member Design - Steel Composite Beam		Made by XX	Date	21/11/202	Chd.
ULS Sagging Moment Capacity					
(With Low or High Shear Force; At Least Compact Section	-				
Compression capacity of concrete effective slab, $R_c = (D_s - D_p) x$	B _e x 0.45 x f _{cu}	=	3749	kN	
Tensile capacity of steel, $R_s = p_y A_s =$			3218	kN	
Tensile capacity of one steel flange, $R_f = p_y A_f =$			898	kN	
Tensile capacity of overall web depth, $R_w = (R_s - 2R_f) =$			1422	kN	
Tensile capacity of clear web depth, $R_v = dtp_y =$			1323	kN	
Shear stud capacity between zero and max sagging, $R_q = N_a P_d$	=		2134	kN	
- for one stud per trough k = 0.		11 brt < 0.92			
Profile reduction, $r = -$ for two studs per trough $k = 0$			0.45		
(Note r limits for perpendicular deck; 0.60 used fo	r parallel)				
Number of studs per section, N =			2		
Stud height, $h = MIN (h, 2D_p) =$			92	mm	
Average trough width, $b_a =$			132	mm	
Depth of profile decking, $D_p =$			46	mm	
Number of studs provided, $N_a = [N.(L/s_l)]/2$ s/s and	d [N.(0.7L/s _i)]	/2 continuous			
Capacity of 1 shear stud based on prop table (ϕ , h,			104	kN	
Design capacity of 1 shear stud in sagging, $0.8P_c =$			83	kN	
Design capacity of 1 shear stud in sagging, $P_d =$			37	kN	
$(for LWC P_d = 0.9r(0.8P_c), NWC P_d = 1.0r(0.8P_c))$					
Plastic moment capacity of steel alone, $M_s = s_x p_y <= 1.2 Z_x p_y$	=		649	kNm	
Plastic moment capacity of composite section, M_{pc} or $M_c =$		Case 4	1079	kNm	
Plastic moment capacity of composite section (high shear force)	, M _{cv} =		1079	kNm	
Applicability of high shear force (if $F_v > 0.5P_v$)			Low Shea		
	$F_{v} = 0.0$ at r	midspan =	0	kN	
$M_{\rm cv} = M_{\rm c} - (M_{\rm c} - M_{\rm f}) (2F_{\rm v}/P_{\rm v} - 1)^2$	$P_v =$		888	kN	
Moment capacity of steel minus web area, $M_f = BT$			465	kNm	
Plastic moment capacity utilisation = $M_{ULS,SAG} / M_{cv}$ =			90%		ОК
Approximate moment resistance calculation	-				
2.4 T py = 355 Be = L/4 3m					
2.2 3 2.0 4 1. Obtain Mp for steel beamfrom section 4.4.	-				
g 2.0 1. Obtain Mp for steel g 5.0 beamfrom section 4.4. g 5.0 Use multiplier to obtain g 1.8 Mp of composite beam.	-				
5 1.4					
	-				
	-				
	1	M _s =	649	kNm	
		Mass =	92.1	kg/m	
	+				
· · · · · · · · · · · · · · · · · · ·	50				
Weight of steel section (kg/m)	- 4				

C				l ł.			Job No.		Sheet No.		Rev.
	CONSULTING EI GINEERS			neet			jXXX			13	
							Member/Location	n			
Job Title	Member Desigr	n - Steel Co	mposite Bear	 m BS595	0 v2015.0	2.xlsm	Drg.				
Member De	esign - Steel Com		•				Made by	хx	Date	21/11/20)21 Chd.
											<u>BS5950</u>
	0.45f I		R		.1	R.		1⊢			
P.N.A	0.45f	P.N.			말-많	7/////	<u>∄−</u> Ťv				
-1 F	=	I T ⊢	Pv	۹ <u>د .</u> .	P.N.A.	₽	÷.				
	2										
	C										
		≱⊨		-		1					
— y	, IN SLAB	V. IN S	TEEL FLAN	JGE	y _p IN S	TEEL V	VEB	\vdash			
		Jp III O						┛┤			
Case 1: R	$R_c > R_s$ (plastic and full shear connection	neutral axis	s lies in conc	rete slab):						
(a	$D = \begin{bmatrix} D \\ D \end{bmatrix} = \begin{bmatrix} D \\ B \end{bmatrix}$	$R_s / D_s - D$	671				INVALI	D	N/A	kNm	
$M_{pc} = 1$	$R_{\rm s}\left[\frac{D}{2}+D_{\rm s}-\frac{R}{R}\right]$	R _c (2	<u>^/]</u>								
Case 2: R	$R_{\rm c} > R_{\rm c} > R_{\rm m}$ (r	plastic neut	ral axis lies i	n steel fl	ange).						
(a	$R_{s} > R_{c} > R_{w}$ (plant ind full shear connection D	(n)	$D = D^2 T$	n steer n	ange).		INVALI	р	N/A	kNm	
$M_{\rm pc} =$	$R_{\rm s} \frac{D}{2} + R_{\rm c} \left(\frac{D_{\rm s}}{2}\right)$	$\left(\frac{1}{2}\right) - \left(\frac{1}{2}\right)$	$\frac{R_s - R_c}{R_f} \frac{1}{4}$					_	N/ A		
				1							
Case 3: R.	$_{ m c} < R_{ m w}$ (plastic indication of the state of	neutral axis	lies in web):								
$M_{\rm pc} =$	$M_{\rm s} + R_{\rm c} \left(\frac{D_{\rm s} + D_{\rm s}}{2}\right)$	$\frac{D_p + D}{D_p}$ -	$\frac{R_c^2}{D}$				INVALI	D	N/A	kNm	
p.=	(2)	R_w 4								
Dearee of :	shear connection	achieved		6	56% Part	ial She	ar Conne	ctio	n Achieved	1	
	R _q <		R _c								
	R _q <		R _s								
	(Note that eith						connectior	1)			
	Degree of shea Minimum allow								66.3%		
	Minimum allow Minimum shear			1					47.1% 64%		ОК
Care A. P	$R_{\rm w}$ (plastic r										
				-							
$M_{\rm c} = R$	$\frac{D}{2} + R_q \left[D_s - \frac{1}{2} \right]$	$\frac{R_q}{R_c} \left(\frac{D_s - I}{2} \right)$	$\left[\frac{r_p}{P}\right] = \frac{(R_s - R_s)}{R}$	$\frac{R_q}{R_f} \frac{1}{4}$			VALID		1079	kNm	
NB the lag	st term in this exp	pression is g	enerally small	I.	┣─┤──						
	$< R_w$ (plastic r		1		<u>a</u>						
	-			² D			INVALI	D	N/A	kNm	
$M_{\rm c} = M$	$t_{\rm s} + R_{\rm q} \left[\frac{D}{2} + D_{\rm s} \right]$	$-\frac{R_q}{R_c}\left(\frac{D_s}{2}\right)$	$\left[\frac{D_p}{2}\right] = \frac{R}{R}$	<u>4</u> <u>4</u>							
			1	1	1		1			1	

CONSULTING Engineering Calculation Sheet	Job No.	Sheet No.		Rev.
E N G I N E E R S Consulting Engineers	jXXX		14	
		_		
	Member/Location			
Job Title Member Design - Steel Composite Beam BS5950 v2015.02.xlsm	Drg.	1-		
Member Design - Steel Composite Beam	Made by XX	Date	21/11/2021	
ULS Hogging Moment Capacity				<u>BS5950</u>
(With Low or High Shear Force; At Least Compact Section)				
Effective width for hogging moment, B _{e,hog} =		N/A	mm	
Tensile capacity of the reinforcement over width $B_{e,hog}$, $R_r = A_{s,prov,h}$, $B_{e,hog}$, $f_y = A_{b,hog}$, $R_r = A_{$		N/A	kN	
Height of reinforcement above top of beam, $D_r = D_s - cover =$		105	mm	
Shear stud capacity between zero and max hogging, $R_q = N_a P_{d,hog} =$		786	kN	
Number of studs per section, N =		2		
Number of studs provided, $N_a = [N.(0.5L/s_i)]/2 =$		28		
Design capacity of 1 shear stud in sagging, $P_d =$		37	kN	
Design capacity of 1 shear stud in hogging, $P_{d,hog} = (.6/.8).P_d =$		28	kN	ļ
Plastic moment capacity of steel alone, $M_s = s_x p_y <= 1.2Z_x p_y =$		649	kNm	
Plastic moment capacity of composite section, M_{pc} or $M_{c} =$	N/A	N/A	kNm	
Plastic moment capacity of composite section (high shear force), $M_{cv} =$		N/A	kNm	
Applicability of high shear force (if $F_v > 0.5P_v$)		Low Shear		
$M_{\rm cv} = M_{\rm c} - (M_{\rm c} - M_{\rm f}) (2F_{\rm v}/P_{\rm v} - 1)^2 \qquad \qquad F_{\rm v} = V_{\rm ULS} \text{ at}$	supports =	298	kN	
		888	kN	
Moment capacity of steel minus web area, $M_f = BT(D-T)p_y =$		465	kNm	
Plastic moment capacity utilisation = $M_{ULS,HOG} / M_{cv}$ =		N/A		N/A
Case 1: $R_r < R_w$ (plastic neutral axis lies in web):				
$M_{\rm nc} = M_{\rm s} + R_{\rm s} \left(\frac{D}{2} + D_{\rm r}\right) - \frac{R_{\rm q}^2}{R_{\rm w}} \frac{D}{4}$				
$M_{\rm nc} = M_{\rm s} + R_{\rm s} \left(\frac{1}{2} + D_{\rm r}\right) = \frac{1}{R_{\rm w}} \frac{1}{4}$	N/A	N/A	kNm	
Case 2: $R_r > R_w$ (plastic neutral axis lies in flange):				
$M_{\rm nc} = R_{\rm s} \frac{D}{2} + R_{\rm r} D_{\rm r} - \frac{(R_{\rm s} - R_{\rm r})^2}{R_{\rm f}} \frac{T}{4}$			L.N.I.	
$M_{\rm nc} = K_{\rm s} \frac{1}{2} + K_{\rm r} D_{\rm r} = \frac{1}{R_{\rm f}} \frac{1}{4}$	N/A	N/A	kNm	

								Job No.	Sheet No.		Rev.
			Engineering		Sheet						
ENG	INE	EKS	Consulting E	ingineers				jXXX	15		
								Member/Location			
Job Title	Memb	oer Desi	ign - Steel C	omposite Be	am BS5950 v2	015.02.xls	m	Drg.			
Member Desi	ign - S	Steel Co	mposite Bea	m				Made by XX	Date	21/11/202	2£ ^{hd.}
SLS Deflect	ion										<u>BS5950</u>
At Construc	tion										
Dead load of									8.9	kN/m	
Deflection of	steel	$\delta_{s,construc}$	$t_{t,dl} = 5\omega_{DL}L^{-}/$	/(384EI _x).(1-	-0.6(M ₁ +M ₂)/M	0) =	(Unpropped)	29.1	mm	
At Service											
Live lead (factor	od)							14.2	L-N1 /	
Live load (un Superimpose									14.2	kN/m	
· · ·	u uea	u ivaŭ (umactoreu),	$\omega_{SDL} =$					7.7	kN/m	
$\omega_{LL} + \omega_{SDL} =$ Proportion of	impo	sod o	+ w_ that i	s normanont	t (i.e. ω _{SDL}), pl	- 0 // 0) v 10004	21.8 35.1	kN/m %	
Short-term n						— ω _{SDL} /(ω _L	L+(USDLJ X 100%	6.0	70	
Long-term m			-								
									18.0		
Combined m	Juulai		$a_e - a_s + pi(s)$	$(u_1 - u_s) =$	$- \Lambda I(D)$	n) P 1		=	10.2 0.045		
(Note concre	to flar		racked if v		$= A/[(D_s - d_s)]$	$(D_p)D_c$	Ļ	=	0.045		
		ige une									
				$D_{\rm s} - D_{\rm g}$	$\frac{D}{2} + \frac{D}{2}$	+ n)					
	Unc	racked	ΝΔ	2	$- + \alpha_{e'} \sqrt{2}$	$+ D_s$		VALID	153	mm	
	One	ackeu	x_e		$\frac{P}{(1 + \alpha_{\rm e} r)} + \frac{D}{(1 + \alpha_{\rm e} r)}$			VALID	155		
Uncracked	Ic	1 -	$A(D + D_s)$	$(+ D_p)^2$	$\frac{B_{\rm c} (D_{\rm s} - L)}{12 \alpha_{\rm e}}$	$\frac{2}{p}^{3} + 1$		VALID	1574607347	mm ⁴	
onclucked	10	I_{c} –	4 (1 +	$\alpha_{\rm e} r$)	$12 \alpha_e$	1 1		TALID	1374007347		
	Crac	ked NA	Χ. :	= [D+2D_1/[1+(1+B _e (D+2[$(\lambda_{\alpha_{2}})^{0.5}$	 =	INVALID	145	mm	
		cked Ic		$= I_v + (B_s x_s)$	$\frac{1}{a^3}/(3\alpha_e) + A(D)$	/2+Dx_)	2 =	INVALID	1574667982	mm ⁴	
			-0		alid neutral axi				153	mm	
			Hence valid		econd moment				1574607347	mm ⁴	
	Apr				posite section to that o						
	-										
						÷ 3m	ŀ				
		4.0 -			B_ = 5(D_+D_) : M ▼ 18 8 18		ŀ				
		-+.0 -		λ		±i	ŀ				
	-	3.6 -	Ľ,	<i>H</i>	'±⊥ ASSUMED \$	SECTION 1/	, F				
			7	. <i>1</i> X	Normal weight cor		Í				
		3.2 -		\bigvee		-	ŀ				
		3.6 - 3.2 - 2.8 - 2.4 -			- 15		ľ				
			Lightweight	concrete			ľ				
		2.4 -			\sim	7-1	ľ				
		2.0 -				\sim	Ī	I _x =	552270000	mm ⁴	
					. . .		ľ	Mass =	92.1	kg/m	
			20 4		0 100 120 section (kg/m)	140	ľ				
				maight of t							

CO		En einen in e	Calaulatian Cl			Job No.	Sheet No.	
		Engineering (Consulting Er		neet		ivvv	16	
ENG	INEEKS		Igineers			jXXX	10	
						Member/Location		
Job Title	Member Des	ign - Steel Co	mposite Bear	m BS5950 v2	015.02.xlsm	Drg.	•	
Member Desi	gn - Steel Co	mposite Bear	n			Made by XX	Date	21/11/2021
						1		
	Section m	odulus for ste	el in tension	$Z_{\rm t} = I_{\rm c}/(L$	$D + D_{s} - 2$	(c) =	3089305	mm ³
					-			
	Sectio	on modulus fo	r concrete in	compression	$Z_{\rm c} = I_{\rm c} \alpha$	$ x_{e} =$	104777527	mm ³
Type of beam	n support con	ditions =					Simply Supported	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
Live Load D	eflection							
Deflection ful	ly composite	section s/s be	eam, δ _{σ f 11} = 5	- 5ω ₁₁ L ⁴ /(384FT	() =		16.3	mm
		s beam, δ _{s,ll} =					46.5	mm
		ear connectio					66.3%	
	-	site s/s beam					19.4	mm
		struction $\delta_{c,p,r}$).5(1 – K)(δ_	$\mu - \delta_{cf}$			
	Unpropped con	onstruction δ	$\delta = \delta =$	+ 0.3(1 - K)($\delta_{-11} - \delta_{-611}$)		
Deflection pa	rtially compo	site continuou	$\frac{c,p,n}{ls}$ beam. $\delta_{a,n}$	$\frac{1}{\alpha + \mu} = \delta_{\alpha + \mu} \cdot (1)$	$-0.6(M_1+M_2)$	$(M_{0}) =$	19.4	mm
		for s/s if s/s)		ct,ii °c,p,ii (-		/0/		
		simply suppor	ted beam M				299.3	kNm
		upport 1, M_1 :					0.0	kNm
		support 2, M_1					0.0	kNm
		tion = $\delta_{c,p,ct,II}$					54%	KINITI
		cion – o _{c,p,ct,ll} /	(L/300) =				5470	
SLS Load De	flaction							
SLS LOAU DE	enection							
Dercentage	fdood opd o	unarimpacad	daad laad daf	flaction proces	mbor 0/ pcor		0.0	%
Percentage of Deflection pa						-	59.0	mm
					±)/	for propped		11111
		$\delta_{c,p,ct,sls} = \delta_{c,p}$					$\omega_{LL}) / \omega_{LL}$ for unprop	nned constru
SLS load defl					,ct, · ((1-70p		91%	
		ead load defle			procambor		0.0	mm
		camber = $\delta_{c,\mu}$						11111
							r unpropped construc	tion
	DL+SDL pret	Lamber – 70p	Carris O _s , construc	ct,dl + ^O c,p,ct,ll	. ()opcani. @	SDL) / WIL IOI		

CO	NSULTING	Engineering (Colculation Ch	aat		Job No.	Sheet No.		Rev.
		Consulting Er		leet		jXXX		17	
						Member/Location			
Job Title	Member Desi	ian - Steel Co	mposite Bear	n BS5950 v20)15.02.xlsm	Drg.			
		mposite Bean	-			Made by XX	Date	21/11/202	1 C ^{hd.}
	nd Concrete					•			
At Construc	tion								
Dead load of	slab, steel be	eam and deck	ing (unfactor	ed). თი =			8.9	kN/m	
	to dead load,			,,			187	kNm	
	,		Simp	ly Supported	M _{DI} =	$=0.125\omega_{DL}L^2=$	187	kNm	
			· · · · · · · · · · · · · · · · · · ·	uous 2 Span		$= 0.070 \omega_{DL} L^2 =$	105	kNm	
		Conti	nuous 3 Spar	-		0.080ω _{DL} L ² =	120	kNm	
			us 3 Span (Ir			=0.025ω _{DL} L ² =	37	kNm	
		Continuous 4				$= 0.077 \omega_{DL}L^2 =$	115	kNm	
		tinuous 4 or N				=0.036ω _{DL} L ² =	54	kNm	
(Note proppe				struction effe					
• • • •	el section, σ_{s1}		,		,	,	90	N/mm ²	
	, 51								
At Service									
SLS load exc	luding DL (for	r unpropped)	= wsis - wni =	=			21.8	kN/m	
	r propped), ω		515 01				30.7	kN/m	
	to SLS load,						461	kNm	
	,	525	Simp	ly Supported	Me	$_{\rm S}=0.125\omega L^2=$	461	kNm	
				uous 2 Span			258	kNm	
		Conti		n (End Span)			295	kNm	
			us 3 Span (Ir	(, ,			92	kNm	
		Continuous 4				_s =0.077ωL ² =	284	kNm	
		tinuous 4 or N				$s = 0.036\omega L^2 =$	133	kNm	
Additional st		section, $\sigma_{s2} =$					149	N/mm ²	
		$n = \sigma_{s1} + \sigma_{s2}$					240	N/mm ²	
		n utilisation =		_y =			87%	,	ОК
Strace in con	croto coction	– – M /7	_					2	
		$\sigma_{c} = M_{SLS}/Z_{c}$					4.4 25%	N/mm ²	ОК

CO	NGUI TINC	Engineering	Colouiotion Cl	aaat		Job No.	Sheet No.		Rev.
E N G	ONSULTING G I N E E R S	Consulting E	ngineers	IEEL		jXXX		18	
						Member/Location			
Job Title	Member Des	ian - Steel Ca	mposite Bear	n BS5950 v2	015.02.xlsm	Drg.			
	ign - Steel Co					Made by XX	Date	21/11/2021	Chd.
	uction Shear			6 x Constru	ction Loadir				
	Shear Force								
	ar X area, A _v =						5384	mm ²	
	ear X area, A_v						N/A	mm ²	
$P_v = 0.6p_yA_v$, =						888	kN	
ULS construc	ction shear fo	rce, V _{ULS,constru}	_{lct} =				125	kN	
Construction	shear capaci	ty utilisation :	= V _{ULS,construct}	$/(0.6P_v) =$			23%		ОК

CONSULTIN		Colculation C	haat		Job No.	Sheet No.		Rev.
E N G I N E E R	G Engineering S Consulting E		neel		jXXX		19	
					Member/Location			
Job Title Member De	esign - Steel Co	mposite Bear	m BS5950 v2	015.02.xlsm	Drg.			
Member Design - Steel	-	-			Made by X	K Date	21/11/202	21 ^{2hd.}
ULS Construction Sag	-		4 x DL + 1.0	5 x Construc				<u>BS5950</u>
(With Low Shear Ford								
LTB effective length, L _{LT}		-				14.1	m	
Minor axis slenderness,	1	=				311.9		
Taking $\beta_w = 1$ for plastic						1.0		
Equivalent slenderness,						185.2		
	arameter, u =					0.872		
	Torsional ind	ex, x =				36.5		
	$\lambda / x =$		1			8.54		
Slendernes	ss factor, $v =$	$v = \frac{1}{r_1}$	$\frac{1}{+0.05(\lambda/x)^2}$	0.25		0.681		
		1]	$+0.05(X/x)^{-}$	1				
Bending strength, $p_b =$						46	N/mm ²	
	$p_{T}p_{T}$		2	2				
$p_{\rm b} = -$	$\frac{p_{\rm E}p_{\rm y}}{p_{\rm LT} + (\phi_{\rm LT}^2 - p_{\rm E})}$	PE	$-(\pi E/\lambda)$	LT)				
φ	$p_{\rm LT} + (\phi_{\rm LT} - p_{\rm E})$	^р у)	$p = \frac{p_y + (\eta_L)}{p_y}$	$(T + 1)p_E$				
$\lambda_{LT} =$		41		2		185.2		
Euler stres	s, p _E =					59	N/mm ²	
p _y =						275	N/mm ²	
$\phi_{LT} =$					a	198	N/mm ²	
	Limiting equi	valent slende	erness, $\lambda_{L0} =$	$0.4(\pi^2 E/$	$p_{}^{0.5}$	34.3	,	
	Robertson co	nstant, $a_{LT} =$, y,	7.0		
	Perry factor,	η _{LT} =				1.056		
	The Perry fa	tor η_{LT} should	be taken as fo	llows:				
	a) for rolle							
	$\eta_{\rm LT}$ =	$\alpha_{\rm LT}(\lambda_{\rm LT} - \lambda_{\rm L0})$)/1 000 but	$\eta_{\rm LT} \ge 0$				
	b) for welded	sections:						
	$-$ if $\lambda_{L'}$		$\eta_{\rm LT} = 0$					
			$\eta_{LT} = 2a$ $_0: \eta_{LT} = 2a$		000			
	$- \text{ if } \lambda_{L'}$			$T_{T} (\lambda_{LT} - \lambda_{L0}) / 1 (\lambda_{LT} - \lambda_{L$	000			
Plastic modulus, s _x (but	<= 1.2Z _x) =					2360	cm ³	
Equivalent uniform mon		.TB, m _{LT} =				1.0		T.18
Buckling resistance, M _b /	$m_{LT} = s_x p_b / m_{LT}$	=				109	kNm	
LTB restraint provided b	y decking =		Decking	g perpendicul	ar, comp fla	nge restraine	ed	
Moment capacity, M _{cap,co}	$p_{\text{onstruct}} = p_{y} s_{x}$ (re	strained) or l	M _b /m _{LT} (unres	strained) =		649	kNm	
Construction sagging be						406	kNm	
Construction moment ca				onstruct =		63%		ОК
		,						

CONS	SULTING	Engineering	Calculatio	n Shaat			Job No.	Sheet No.		Rev.
		Consulting E		I Sheet			jXXX		20	
							Member/Location			
Job Title Me	ember Desi	gn - Steel Co	mposite E	Beam BS	5950 v2	015.02.xlsm	Drg.			
Member Design	- Steel Co	mposite Bear	n				Made by X	X Date	21/11/20	21 ^{2hd.}
ULS Construct	ion Hoggi	ing Moment	Capacity	(1.4 x	DL + 1.	6 x Constru	ction Loadi	ng)		<u>BS5950</u>
(With Low She	ear Force;	At Least Co	ompact S	ection)						
LTB effective ler	ngth, L _{LTB,H}	_{log} =	-					12.116	m	
Minor axis slend	lerness, λ	$= L_{LTB,HOG}/r_v$	=					268.7		
Taking $\beta_w = 1$ for		1 1						1.0		
Equivalent slend					$\tau = uv\lambda(\theta$	$(0.5)^{0.5} =$		N/A		
Equivalent slend	derness (re	estrained tens	sion flange	e)		= $n_t u v_t \lambda$		152.7		
		correction fac			ν _{TB} =	$= n_t u v_t \lambda$		1.00		G.4.3
		ameter, u =						0.872		
		Torsional ind	ex.x =					36.5		
		$\lambda / x =$						7.4		
Sle		factor, v or v_1	. =					0.652		
		Restraint abo		shear c	entre a	= d/2 =		238	mm	
		Clear web de			chuc, u	- 4/2 -		477	mm	
 Do	cking pern	endicular, te			ained					
								<u> </u>		
V	$r = \frac{1}{[1+0.0]}$	$\frac{1}{05(\lambda/x)^2}^{0.25}$		ν _t	= -	$\frac{4a/h}{+(2a/h_a)^2}$ +	$\frac{1}{0.05(\lambda/x)^2}$.5		
	prestrained	tension flang				ension flange	-			
Bending strengt		tension nang						65	N/mm ²	
	-		<u> </u>			9		05		
D	n. =	$p_{\rm E}p_{\rm y}$	0.5	$p_{\rm E} =$	$(\pi^2 E / \lambda)$	LT) —				
	ϕ_{L1}	$\frac{p_{\rm E}p_{\rm y}}{p_{\rm LT}^2 - p_{\rm F}}$	$(p_y)^{0.0}$	$\phi_{LT} =$	$p_{\rm y} + (\eta_{\rm I}$	$\frac{1}{2} + 1)p_{\rm E}$				
	or $\lambda_{\text{TB}} =$					2		152.7		
	ler stress,	p _E =						87	N/mm ²	
py	=							275	N/mm ²	
φ _{LT}	• =					9	0.5	217	N/mm ²	
		Limiting equi			ss, $\lambda_{L0} =$	$0.4(\pi^2 E/$	(p_y) .	34.3		
		Robertson co		т =				7.0		
		Perry factor,			<u></u>			0.829		
		The Perry fa		ould be t	aken as fo	llows:				
		a) for rolle		1. 10.0	00 hert					
		$\eta_{LT} =$	$a_{\rm LT}(\lambda_{\rm LT} -$	л _{L0} л1 0	oo but	$\eta_{\rm LT} \ge 0$				
		b) for welded								
		$- \text{ if } \lambda_{L'}$	$\Gamma \leq \lambda_{L0}$:		$\eta_{\rm LT} = 0$ $\eta_{\rm LT} = 2$	$\lambda_{\rm LT} (\lambda_{\rm LT} - \lambda_{\rm L0})/1$	000			
		— if 2λ	$\lambda_{L0} \leq \lambda_{LT} \leq \lambda_{LT}$	3λ _{L0} :	$\eta_{LT} = 2a$	ι _{LT} λ _{L0} /1 000				
		$-$ if $\lambda_{L'}$				$T_{\rm T}(\lambda_{\rm LT} - \lambda_{\rm L0})/1$	000			
Plastic modulus,	, s _x (but <	$= 1.2Z_x) =$						2360	cm ³	
Equivalent unifo	orm momei	nt factor for l	TB, m _{LT} o	r m _T =				1.0		T.18 or G.4.
Buckling resista	nce, M _{cap,co}	$_{\text{onstruct}} = M_{\text{b}}/(r$	n _{LT} or m _T)	$= s_x p_b$	/(m _{LT} or r	m _T) =		153	kNm	
Construction ho	gging bend	ding moment	, M _{ULS,constr}	uct,HOG =	:			0	kNm	
Construction mo	oment capa	acity utilisatio	$n = M_{ULS,o}$	construct,S/	AG / M _{cap,c}	onstruct =		N/A		N/A
			,							

	NSULTING	Engineering	Calculation St	heet		Job No.	Sheet No.		Rev.
		Consulting E		leet		jXXX		21	
						Member/Location			
Job Title	Member Des	ign - Steel Co	mposite Bear	m BS5950 v2	015.02.xlsm	Drg.			
		omposite Bear	-			Made by XX	Date	21/11/202	f ^{hd.}
	erse Reinfor	-							
Longitudinal	shear force p	er unit length	$v = NP_d/s_l =$	=			333	kN/m	
-		tuds per troug	- u. i				2		
		lesign capacit					37	kN	
		(with respect		d_{pitch} , $s_{\text{I}} =$			225	mm	
longitudinal	-	er unit length	-				166	kN/m	
								,	
Shear resista	$nce. v_{r} = 0.7$	՝ ′A _{sv} f _y + 0.03ղ	$A_{m}f_{m} + v_{m}$ (b)	$t < 0.8nA_{out}$	$(5.0)^{0.5} =$		506	kN/m	
	Area of trans	sverse steel p	er lenath of h	peam, $A_{m} = 0$	πφ ₊ ² /4)/s ₊ + a	irea _{add} =	444	mm ² /m	
		reinforcemer				auu	109	mm ² /m	
	Strength of r			- (-s-p)			460	N/mm ²	
		L.0 for NWC a	nd 0.8 for LW	/C =			1.0		
		f concrete fla			00 =		107000	mm²/m	
		strength of c					35.0	N/mm ²	
		of steel deck					280	kN/m	
		ing is perpen	1 1 /1				200		
			steel decking				1.00	mm	
			gth of steel d	-			280	N/mm ²	
		9.1		57 Pyp			200		
Transverse s	teel utilisatio	n = MAX (1-(Amin area)	$/A_{m} v/(v_{r}/2)$) =		33%		ОК
					/		5570		
					over width	of decking			
					orer mour	or decking	-		
	a		einforcemen	<u> </u>	b	b			
				<u> </u>			<u></u> –		
				77		<u> </u>			
		╡╋═╶╬╴╴			, Min		<u>v</u> .		
			ov	erlap					
	_					-			
		(a)			(b)				
		(5)			(0)				

0	ONSULTING F	ainoorina Ca	laulation St	poot		Job No.	Sheet No.		Rev.
E N	CONSULTING Er GINEERS	onsulting Eng	ineers	icet		јХХХ		22	
						Member/Location			
ob Title	Member Design	- Steel Com	posite Bear	n BS5950 v2	015.02.xlsm	Drg.			
	esign - Steel Com		•			Made by XX	Date	21/11/2021	Chd.
	ection Force								<u>BS5950</u>
	e at either end of		I				298	kN	
loment at	either end of bea	$m = M_{ULS} =$					0	kNm	
									1
	_								
	_								
					<u> </u>				
					<u></u>				