Project Title	Job No.		
Discipline Structural	File Ref.		
Review Date	Reviewer		
Project Stage	Circulation		
Abbreviations		Legend	
ES = Every Storey	$MODEL = Model \; Explorer \to Model \to Model$	Pass	\checkmark
BA = Analyze → Run Analysis	TABLE = Model Explorer \rightarrow Tables \rightarrow Tables	Fail	Х
$STAGE = Analyze \rightarrow Run Analysis$	DAS = Differential (Elastic, Creep, Shrinkage) Axial Sh	ortening Not Applicable	NA
[Staged Building Analysis]	$OPTION = Model Explorer \rightarrow Display \rightarrow Model Window$	vs \rightarrow Options	
SAFE = FE Floor Analysis	$DISPLAY = Model \; Explorer \rightarrow Display \rightarrow Model \; Window$	ws \rightarrow Display	

Building SLS Load (MN) | Undecomposed | BA | STAGE | BA+STAGE Foundation

Checklist Inclusions and Exclusions

EQ Checks Included Wall / Column Nodal Loads and Live Load Reduction Checks Included Hinged Beam Checks Included						
Wall / Column Clear Height, Effective Height and Base Support Checks Included Transferred Wall / Column on Transfer Beam / Slab Checks Included						
Section Properties, Torsion and Horizontal Framing Checks Included Method of Slab Analysis, Beam Load Application and Frame Analysis Checks Included						
Redundant Slab, Beam and Wall / Column Analysis and Design Checks Included Rare Slab, Beam and Wall / Column Analysis and Design Checks Included						
Pad Footing Checks Included Strip Footing Checks Included Raft / Piled Raft Footing Checks Included Pile Footing Checks Included						

Note that in this document, the terms steel, rebar and reinforcement refer to steel reinforcement bars associated with RC or PT construction, whilst the term tendon refers to tendons associated with PT construction.

ITEM	CONTENT		\checkmark
1.0	COMPANY STANDARD TEMPLATE CHECKS		
1.1	General		
1.11	Company standard template used → MultiStorey-EQ		
1.12	Date of release of company standard template.		
1.2	Variations to Company Standard Template		
1.21	OPTION → View by Colors of → Materials → check concrete grade for slab/beam/wall/column/foundation whilst ensuring OPTION → Frame/Shell Assignments → Material Overwrites are selected. MODEL → Properties → Frame Sections (of beams) → Property Modifiers → check (m11, m22, m33) are 1.00 (i.e. uncracked) for Class 1 PT or Class 2 PT and 0.50 (i.e. cracked) for RC or Class 3 PT whilst ensuring OPTION → Frame Assignments → Property Modifiers are selected. MODEL → Properties → Slab Sections → Modifiers → check (m11, m22, m12) are 1.00 (i.e. uncracked) for Class 1 PT or Class 2 PT and 0.50 (i.e. cracked) for RC or Class 3 PT whilst ensuring OPTION → Shell Assignments → Stiffness Modifiers are selected.		
1.22	Non-sway/sway column (note wall N/A).	Non-Sway/Sway	
1.23	Maximum beam/wall/column rebar diameter.		
1.24	Adoption of (unique) design links at beam supports.		
1.25	Beam section cuts (span only – once for every beam or once for every axis).		
1.26	Assign \rightarrow Frame \rightarrow End Length Offsets \rightarrow assign Rigid-Zone Factor 1 (Maximum) or Rigid-Zone Factor 0 (None). Assign \rightarrow Frame \rightarrow End Length Offsets \rightarrow assign Frame Self Weight Based on Clear Length or Frame Self Weight Based on Full Length.		
1.27	Compatibility torsion (m11=1.0) for transfer / edge beams for Class 1 PT or Class 2 PT. Compatibility torsion (m11=0.5) for transfer / edge beams for RC or Class 3 PT.		
1.28	Foundation load combinations G+Q load factor (1.00, 1.02, 1.05, 1.10).		
1.29	Etcetera.		
1.3	Variations to Material Properties		

ITEM	CONTENT					
1.31	For RC models with BS EN1998-1 (i.e. the primary seismic beat capacity), for simpli	he optimum location and s m plastic moment capacity city, the steel reinforceme ect to the steel reinforcem	equence of attainment of r prior to the attainment of ant strength of primary seis nent strength of primary	ubes, as per capacity design concepts of member capacity with the attainment of primary seismic column plastic moment smic column longitudinal bars should be seismic beam longitudinal bars by the		
	(Opt Ductility Class Ductility Class Medium (DCM) and Ductility Class High (DCH)		city Design Concepts uence of Attainment of BS EN1998-1 Clause cl.4.4.2.3 $\Sigma M_{Rc} \ge 1.3\Sigma M_{Rb}$	Member Capacity) CSI.Etabs Representation Maintain longitudinal bar strength grade at fy Reduce longitudinal bar strength grade to fy / 1.3		
1.32	For RC models with EQ loads stabilised by moment frames or (framed) tubes, as per capacity design concepts of BS EN1998-1 (i.e. the favourable mechanism of deformation with the primary seismic beam and primary seismic column elemental attainment of ductile plastic moment capacity prior to elemental attainment of brittle shear capacity), for simplicity, the steel reinforcement strength of primary seismic beam and primary seismic column shear links should be reduced with respect to the steel reinforcement strength of primary seismic beam and primary seismic column longitudinal bars by the following factors: - Capacity Design Concepts (Favourable Mechanism of Deformation)					
	Ductility Class Ductility Class Medium (DCM) Ductility Class High (DCH)	Element Primary Seismic Beam Primary Seismic Column Primary Seismic Column	BS EN1998-1 Clause cl.5.4.2.2 $\gamma_{Rd} = 1.0$ cl.5.4.2.3 $\gamma_{Rd} = 1.1$ cl.5.5.2.1 $\gamma_{Rd} = 1.2$ cl.5.5.2.2 $\gamma_{Rd} = 1.3$	Representation Reduce shear link strength grade to f _{yv} / 1.1 Reduce shear link strength grade to f _{yv} / 1.3		
2.0	ARCHITECTURAL	DESIGN INTENT CHECK	(S			
2.1	General				<u> </u>	
2.11				cy of wall/column positions (ES).		
2.12				cy of slab/beam drops (ES).		
2.13	-			cy of slab edges and openings (ES).		
2.14		,	,	labels, storey heights, h (m) including hears) and define base level as St00.		
2.15		•	Stories \rightarrow check total buildi	*		
3.0	FRAMING AND LC	1				
3.1	Framing Intent					
3.11	Check floor framing intent (i.e. simple support, continuous, cantilever) is visually comprehensible. Check floor framing intent (i.e. longitudinal, transverse, stiffener) is visually comprehensible. Check staircase framing intent (i.e. longitudinal, transverse, stiffener) is visually comprehensible. Check joint scheme (contraction, expansion, settlement and sway joints) is visually comprehensible. Check frame sizes → OPTION → {View by Colors of → Sections, Frame Assignments → Sections, Shell Assignments → Sections} → check slab thickness / beam sections / wall thickness / column sections → compare: - (i) slab sizes w.r.t. span to depth ratios (30 RC, 40 PT), ULS bending stress MuLs/bh ² ≈ 1N/mm ² <<					
	 x L²/12, (ii) beam sizes w.r.t. span to depth ratios (20 RC, 30 PT), ULS shear stress V_{ULS}/bh ≈ 3N/mm² << 5N/mm² and ULS bending stress M_{ULS}/bh² ≈ 3N/mm² << 5N/mm² and SAFE deflections, with M_{ULS} and V_{ULS} checked based on 1.4 x tributary width x (15.0-25.0kPa) x L²/12 and 1.4 x tributary width x (15.0-25.0kPa) x L/2, respectively with A_{s,prov} ≈ 3000 . M_{ULS} (kNm) / d (mm), (iii) shear wall #A sizes w.r.t. scheme design ratios (for 0.4% steel, A_C ≈ F_{ULS} / [15@C35; 17@C40; 19@C45; 21@C50; 23@C55; 25@C60] #B1, #B2 effectively equalising axial stress at every level to cater for DAS #C) and shear wall detailing capacity tables, with FuLs checked based on 1.4 x tributary area x no. of storeys x (15.0-25.0kPa) #D, 					

ITEM	CON	ITENT	
	(iv)	transfer beam sizes w.r.t. ULS shear stress $V_{ULS}/bh \approx 3N/mm^2 << 5N/mm^2$ and ULS bending stress $M_{ULS}/bh^2 \approx 3N/mm^2 << 5N/mm^2$, ULS punching shear transfer column face stress $V_{eff}/ud \approx 4N/mm^2$ $<< 5N/mm^2$ (applicable when transfer beam width $>$ column width), deep beam design $^{\#E1}$ and STAGE deflections, with $M_{ULS} = F_{ULS}.L/4$ and $V_{ULS} = F_{ULS}/2$ $^{\#F1}$ computed from F_{ULS} checked based on 1.4 x tributary area x no. of storeys x (15.0-25.0kPa) $^{\#D}$,	
	(v)	transfer slab sizes w.r.t. ULS shear stress $V_{ULS}/bh @ 1.0d \approx 1.0N/mm^2$ [RC] to $1.5N/mm^2$ [PT] << $5N/mm^2$ and ULS bending stress $M_{ULS}/bh^2 \approx 1.5N/mm^2$ [RC] to $2.5N/mm^2$ [PT] << $5N/mm^2$, ULS punching shear transfer column (or transfer column head where applicable) and transferred walls/columns face stress $V_{eff}/ud \approx 4N/mm^2 << 5N/mm^2$, ULS punching shear transfer column (or transfer column head where applicable) and transferred walls/columns head where applicable) and transferred walls/columns first perimeter stress $V_{eff}/ud @ 1.5d \approx 0.6N/mm^2$ [RC] to $1.0N/mm^2$ [PT], deep beam design ^{#E2} and CBAFE deflections, with $M_{ULS} = F_{ULS}.L/4$ and $V_{ULS} = F_{ULS}/2$ ^{#F2} computed from F_{ULS} checked based on $1.4 \times tributary area \times no.$ of storeys $\times (15.0-25.0kPa)$ ^{#D} ,	
	(vi)	column ^{#A} sizes w.r.t. scheme design ratios (for 2.0% steel, $A_c \approx F_{ULS}$ / [20@C35; 22@C40; 24@C45; 26@C50; 28@C55; 30@C60] ^{#B1, #B2} effectively equalising axial stress at every level to cater for DAS ^{#C}), with F_{ULS} checked based on 1.4 x tributary area x no. of storeys x (15.0-25.0kPa) ^{#D} ,	
	(vii)	lateral stability frame size and extent w.r.t. scheme design ratios (height / 10) whilst confirming the braced/unbraced (non-sway/sway) wall/column conditions based on the lateral stability system , the Moment Ratio Check and/or the Sway Susceptibility Check (NHF / wind: non-sway with Q/1.4 \leq 0.05 and sway with Q/1.4 \leq 0.25 with default stiffness parameters; EQ: non-sway with q.Q/0.7 \leq 0.05 and sway with q.Q/0.7 \leq 0.25 with default stiffness parameters),	
	(viii)	lateral stability frame size and extent w.r.t. lateral stability base shear magnitude distribution # ^G and lateral stability base moment magnitude distribution # ^H , and	
	(ix)	lateral stability frame size and extent w.r.t. lateral deflections to NHF / wind ^{#I} ($\delta_{total}/2 \leq H_{total}/500$ and $\Delta \delta_{storey,I}/2 \leq h_{storey,I}/500$ with default stiffness parameters) and EQ ^{#I} ($q.\delta_{total} \leq H_{total}/250$ and $q.\Delta \delta_{storey,I} \leq h_{storey,I}/250$ (with fundamental period $T_1/\sqrt{2}$) with default stiffness parameters), (ES).	
		Note check wall/column for Column Connectivity Length ≥ Storey Height, correctness of duplicate storeys and orm Check Model.	
	Defir Desi <u>o</u> → D	[Textual] : Note check TABLE \rightarrow Design \rightarrow Shear Wall Design \rightarrow Shear Wall Pier Summary and TABLE \rightarrow Model \rightarrow initions \rightarrow Pier/Spandrel Section Properties \rightarrow Pier Section Properties for sectional area, A _c and BA/STAGE \rightarrow TABLE \rightarrow gn \rightarrow Design Forces \rightarrow Pier Design Forces for F _{ULS} to calculate ULS axial stress F _{ULS} /A _c (BA / STAGE) and check TABLE esign \rightarrow Shear Wall Design \rightarrow Shear Wall Pier Summary for % steel << 2% (shear wall vertical steel % limit for lance of through-thickness links).	
	Defir → Co	[Textual] : Note check TABLE \rightarrow Design \rightarrow Concrete Design \rightarrow Concrete Column Summary and TABLE \rightarrow Model \rightarrow nitions \rightarrow Frame Sections \rightarrow Frame Sections for sectional area, A_c and BA/STAGE \rightarrow TABLE \rightarrow Design \rightarrow Concrete Design oncrete Column PMM Envelope for F_{ULS} to calculate ULS axial stress F_{ULS}/A_c (BA / STAGE) and check TABLE \rightarrow Design \rightarrow rete Design \rightarrow Concrete Column PMM Envelope for % steel << 5% (column vertical steel % limit).	
	axial Displ avoic	[Visual] : Note check BA/STAGE \rightarrow DISPLAY \rightarrow Frame/Pier/Spandrel/Link Forces (max) enveloping ULS combinations load, F _{ULS} to calculate ULS axial stress F _{ULS} / A _c (BA / STAGE) manually and check Design \rightarrow Shear Wall Design \rightarrow ay Design Info \rightarrow Design Output \rightarrow Pier Reinforcing Ratio for % steel << 2% (shear wall vertical steel % limit for lance of through-thickness links). [Visual] : Note check BA/STAGE \rightarrow DISPLAY \rightarrow Frame/Pier/Spandrel/Link Forces (max) enveloping ULS combinations	
	axial	load, F_{ULS} to calculate ULS axial stress F_{ULS}/A_c (BA / STAGE) manually and check Design \rightarrow Concrete Frame Design \rightarrow ay Design Info \rightarrow Design Output \rightarrow Rebar Percentage for % steel << 5% (column vertical steel % limit).	
	Defo the t shrin	Note check BA/STAGE \rightarrow DISPLAY \rightarrow Deformed Shape \rightarrow Displacement UZ for DAS and BA/STAGE \rightarrow DISPLAY \rightarrow rmed Shape \rightarrow Displacement UX/UY and MODEL \rightarrow Named Plots \rightarrow Story Response Plots for lateral deflection (sway) of Duilding due to DL+SDL+LL+PT. The SLS load combination inherently includes the effects of differential (elastic, creep, kage) axial shortening. Staged construction analysis may be performed to reduce the magnitude of the effects of rential (elastic, creep, shrinkage) axial shortening.	
	BA \rightarrow and ϕ Resu mini bean \rightarrow D creep	Note check $BA \rightarrow DISPLAY \rightarrow Deformed Shape \rightarrow Start Animation for animated deflections for spurious members and \rightarrow DISPLAY \rightarrow Frame/Pier/Spandrel/Link Forces \rightarrow Axial Force ensuring gradual wall/column axial load incrementcheck BA/STAGE \rightarrow TABLE \rightarrow Analysis \rightarrow Results \rightarrow Frame Results \rightarrow Column Forces, BA/STAGE \rightarrow TABLE \rightarrow Analysis \rightarrowlts \rightarrow Wall Results \rightarrow Pier Forces and BA/STAGE \rightarrow TABLE \rightarrow Analysis \rightarrow Results \rightarrow Reactions \rightarrow Base Reactions formal discrepancy between BA and STAGE wall/column axial load take down by ensuring minimal differentialn support (i.e. wall/column point) settlement (due to DAS and differential transfer floor deflection) in BA/SAFE \rightarrow DISPLAYeformed Shape \rightarrow Displacement UZ !. The ULS load combinations inherently include the effects of differential (elastic,p, shrinkage) axial shortening. Staged construction analysis may be performed to reduce the magnitude of the effects ofrential (elastic, creep, shrinkage) axial shortening.$	

ITEM	CONTENT	\checkmark
	#E1 : Note check (a) transfer beam / transferred wall strut and tie truss analogy design for the transferred wall (acting as the diagonal compression element with the provision of horizontal steel equivalent to 1/4 of the required vertical steel) and transfer beam (acting as the tension element with the provision of rebar of 0.95f _y .A _{s,prov} to resist $F_{ULS}/4$ over the transfer beam depth of span/3), (b) transfer beam deep beam design with A _{s,prov} \approx 3800 . M _{ULS} (kNm) / h (mm), (c) transfer beam longitudinal shear within web and between web and flanges and (d) transfer beam torsion design .	
	#E2 : Note check (a) transfer slab / transferred wall strut and tie truss analogy design for the transferred wall (acting as the diagonal compression element with the provision of horizontal steel equivalent to ¹ / ₄ of the required vertical steel) and transfer slab (acting as the tension element with the provision of rebar of $0.95f_{y}$.A _{s,prov} to resist F _{ULS} /4 over the transfer slab depth of span/3), (b) transfer slab deep beam design with A _{s,prov} \approx 3800 . M _{ULS} (kNm) / h (mm) and (c) transfer slab longitudinal shear within web .	
	#F1 : Note check BA/STAGE \rightarrow DISPLAY \rightarrow Frame/Pier/Spandrel/Link Forces \rightarrow Moment 3-3 for minimal discrepancy between BA and STAGE transfer beam bending moments by ensuring minimal differential transfer beam support (i.e. wall/column point) settlement (due to DAS) !. The ULS load combinations inherently include the effects of differential (elastic, creep, shrinkage) axial shortening. Staged construction analysis may be performed to reduce the magnitude of the effects of differential (elastic, creep, shrinkage) axial shortening.	
	#F2 : Note check BA/STAGE \rightarrow DISPLAY \rightarrow Shell Stresses/Forces $\rightarrow M_{11} + M_{12} $ and $ M_{22} + M_{12} $ for minimal discrepancy between BA and STAGE transfer slab bending moments by ensuring minimal differential transfer slab support (i.e. wall/column point) settlement (due to DAS) !. The ULS load combinations inherently include the effects of differential (elastic, creep, shrinkage) axial shortening. Staged construction analysis may be performed to reduce the magnitude of the effects of differential (elastic, creep, shrinkage) axial shortening.	
	#G : Note check TABLE → Design → Shear Wall Design → Shear Wall Pier Summary and TABLE → Model → Definitions → Pier/Spandrel Section Properties → Pier Section Properties for sectional area, A _C and BA/STAGE → TABLE → Design → Design Forces → Pier Design Forces for V _{ULS} to calculate ULS shear stress $\tau = V_{ULS}/A_c \approx 3N/mm^2$ (based on nominal link provision for vertical elements loaded to 40%f _{cu} at ULS i.e. the capacity for a 0.4% steel reinforced vertical element) << 5N/mm ² for all stability base shear resisting elements i.e. shear walls above transfer and shear walls below transfer. #G : Note check TABLE → Design → Concrete Design → Concrete Column Summary and TABLE → Model → Definitions → Frame Sections → Frame Sections for sectional area, A _C and BA/STAGE → TABLE → Design → Concrete Column Shear Envelope for V _{ULS} to calculate ULS shear stress $\tau = V_{ULS}/A_C \approx 3N/mm^2$ (based on nominal link provision for vertical elements loaded to 40%f _{cu} at ULS i.e. the capacity for a 0.4% steel reinforced vertical element) << 5N/mm ² for all stability base shear resisting elements i.e. shear walls above transfer and shear walls below transfer.	
	#H: Note ensure no foundation uplift.	
	#I : Note check on-plan torsional twist due to NHF, wind and EQ loads.	
3.2	Slab Loads	
3.21	Assign \rightarrow Shell Loads \rightarrow Uniform \rightarrow LL Pattern \rightarrow add slab LL (ES). DISPLAY \rightarrow Shell Load Assigns \rightarrow LL Pattern \rightarrow check slab LL (ES).	
3.22	Assign → Shell Loads → Uniform → SDL Pattern → add slab SDL (ES). DISPLAY → Shell Load Assigns → SDL Pattern → check slab SDL (ES).	
3.23	Assign \rightarrow Frame Loads \rightarrow Point \rightarrow SDL/LL Pattern \rightarrow add slab point loading on (null property) beam (ES). DISPLAY \rightarrow Frame Load Assigns \rightarrow SDL/LL Pattern \rightarrow check slab point loading visually (ES). Assign \rightarrow Frame Loads \rightarrow Distributed \rightarrow SDL/LL Pattern \rightarrow add slab line loading on (null property) beam (ES). DISPLAY \rightarrow Frame Load Assigns \rightarrow SDL/LL Pattern \rightarrow check slab line loading visually (ES). Assign \rightarrow Shell Loads \rightarrow Uniform \rightarrow SDL/LL Pattern \rightarrow add slab partial patch loading on (null property) slab (ES). DISPLAY \rightarrow Shell Load Assigns \rightarrow SDL/LL Pattern \rightarrow check slab partial patch loading visually (ES).	
3.3	Beam Loads	
3.31	Assign \rightarrow Frame Loads \rightarrow Distributed \rightarrow SDL Pattern \rightarrow add beam internal cladding line load (ES). DISPLAY \rightarrow Frame Load Assigns \rightarrow SDL Pattern \rightarrow check beam internal cladding line load visually (ES).	
3.32	Assign \rightarrow Frame Loads \rightarrow Distributed \rightarrow SDL Pattern \rightarrow add beam external cladding line load (ES). DISPLAY \rightarrow Frame Load Assigns \rightarrow SDL Pattern \rightarrow check beam external cladding line load visually (ES).	
3.33	Assign \rightarrow Frame Loads \rightarrow Distributed \rightarrow SDL/LL Pattern \rightarrow add beam user defined line loads (ES). DISPLAY \rightarrow Frame Load Assigns \rightarrow SDL/LL Pattern \rightarrow check beams with user defined line loads visually (ES).	
3.4	Wall/Column Loads	
3.41	Assign \rightarrow Joint Loads \rightarrow Force \rightarrow SDL/LL Pattern \rightarrow add wall/column user defined point loads (ES). DISPLAY \rightarrow Joint Load Assigns \rightarrow SDL/LL Pattern \rightarrow check wall/column user defined point loads visually (ES).	
3.5	Lateral Loads	
3.51	Define \rightarrow Load Patterns \rightarrow add (automatic codified) NHF load patterns (ES).	
	DISPLAY \rightarrow Joint Load Assigns \rightarrow Load Pattern NHF \rightarrow check NHF loads (ES). Define \rightarrow Load Patterns \rightarrow add (manual user defined or automatic codified) wind load patterns (ES). DISPLAY \rightarrow Joint Load Assigns \rightarrow Load Pattern WL \rightarrow check wind loads (ES).	
3.52	Define \rightarrow Load Patterns \rightarrow add (manual user defined or automatic codified) EQ load patterns (ES).	

ITEM	CONTENT			\checkmark	
3.6	Imposed Load Reduction				
3.61	Design → Live Load Reduction Factors	$s \rightarrow$ check live load reduction factor	S.		
3.7	Load Combination Cases				
3.71	Note for EQ ULS load combination cases, if required by cl.4.3.3.5.2 BS EN1998-1 i.e. if avg is greater than 0.25g, then the vertical component of the seismic action will need to be incorporated as follows: - 1.0DL+1.0SDL+ ψ_{2i} LL+ HYP ±1.0EQx±0.3EQz±0.3EQz 1.0DL+1.0SDL+ ψ_{2i} LL+ HYP ±0.3EQx±1.0EQy±0.3EQz by enhancing G to G+0.3EQz where EQz is the total EQ base shear in Z and G is DL+SDL, and for 1.0DL+1.0SDL+ ψ_{2i} LL+ HYP ±0.3EQx±0.3EQy±1.0EQz by enhancing G to G+1.0EQz where EQz is the total EQ base shear in Z and G is DL+SDL. Note for EQ SLS load combination cases, if required by cl.4.3.3.5.2 BS EN1998-1 i.e. if avg is greater than 0.25g, then the vertical component of the seismic action will need to be incorporated as follows: - 1.0DL+1.0SDL+ ψ_{2i} LL+ PT ±1.0EQx±0.3EQy±0.3EQz 1.0DL+1.0SDL+ ψ_{2i} LL+ PT ±1.0EQx±0.3EQy±0.3EQz by enhancing G to G+0.3EQz where EQz is the total EQ base shear in Z and G is DL+SDL, and for 1.0DL+1.0SDL+ ψ_{2i} LL+ PT ±0.3EQx±1.0EQy±0.3EQz by enhancing G to G+0.3EQz where EQz is the total EQ base shear in Z and G is DL+SDL, and for 1.0DL+1.0SDL+ ψ_{2i} LL+ PT ±0.3EQx±0.3EQy±1.0EQz by enhancing G to G+0.3EQz where EQz is the total EQ base shear in Z and G is DL+SDL, and for 1.0DL+1.0SDL+ ψ_{2i} LL+ PT ±0.3EQx±0.3EQy±1.0EQz by enhancing G to G+1.0EQz where EQz is the total EQ base shear in Z and G is DL+SDL. Note effectively both the DL+SDL and LL components within the dynamic weight W is lumped into the enhanced load factor for G.				
3.72	Note for EQ ULS load combination cases, as required by cl.6.4.3.4 BS EN1990, the combination coefficient for variable action, ψ_{2i} will need to be recalculated as per T.A1.1 BS EN1990. 1.0DL+1.0SDL+ ψ_{2i} LL+HYP±1.0EQx 1.0DL+1.0SDL+ ψ_{2i} LL+HYP±1.0EQy 1.0DL+1.0SDL+ ψ_{2i} LL+HYP±1.0EQx±0.3EQy±0.3EQz 1.0DL+1.0SDL+ ψ_{2i} LL+HYP±0.3EQx±1.0EQy±0.3EQz 1.0DL+1.0SDL+ ψ_{2i} LL+HYP±0.3EQx±1.0EQy±0.3EQz Note for EQ SLS load combination cases, as required by cl.6.4.3.4 BS EN1990, the combination coefficient for variable action, ψ_{2i} will need to be recalculated as per T.A1.1 BS EN1990. 1.0DL+1.0SDL+ ψ_{2i} LL+PT±1.0EQx 1.0DL+1.0SDL+ ψ_{2i} LL+PT±1.0EQx 1.0DL+1.0SDL+ ψ_{2i} LL+PT±1.0EQx 1.0DL+1.0SDL+ ψ_{2i} LL+PT±1.0EQx 1.0DL+1.0SDL+ ψ_{2i} LL+PT±1.0EQx 1.0DL+1.0SDL+ ψ_{2i} LL+PT±1.0EQx±0.3EQz±1.0EQz 1.0DL+1.0SDL+ ψ_{2i} LL+PT±1.0EQx±0.3EQz±1.0EQz 1.0DL+1.0SDL+ ψ_{2i} LL+PT±0.3EQx±1.0EQy±0.3EQz 1.0DL+1.0SDL+ ψ_{2i} LL+PT±0.3EQx±1.0EQy±0.3EQz 1.0DL+1.0SDL+ ψ_{2i} LL+PT±0.3EQx±1.0EQy±0.3EQz				
4.0	BOUNDARY CONDITION CHECKS				
4.1	Beam/Column Releases				
4.11	OPTION \rightarrow Frame Assignments \rightarrow En	d Releases $ ightarrow$ check no end releases	s (ES).		
4.12	Check beams on corbels are defined v	vith hinged ends (ES).			
4.13	Check stepped secondary beams acro greater than the width of the primary		h hinged ends for steps of a dimension		
4.14	the longitudinal beam direction) e.g. larger than the thickness of the su defined with hinged ends with a nomi	basement retaining wall or lift core oporting wall (orientated parallel t	porting wall (orientated perpendicular to e wall and beams of widths significantly to the longitudinal beam direction) are e hinged supports (ES).		
4.2	Wall/Column Clear Height				
4.21	Wall	/Column Clear Height Calculati	on		
	Item	Wall Clear Height	Column Clear Height		
	Beam Depths	Not Included	Not Included		
Beam Drops or Elevation Vertical Offset Included only if the corresponding vertical offset is explicitly modelled in the analytical frame model for the wall in the particular storey and the storey above. Included only if the corresponding vertical offset is explicitly modelled in the analytical frame model for the analytical frame model for the column in the particular storey above. Included only if the corresponding vertical offset is explicitly modelled in the analytical frame model for the column in the particular storey above.					
	Multiple Storey Wall/Column Spans	Not Included #A	Included only if the number of storeys that the column spans is specified in Unbraced Length Ratios #A		

ITEM	CONTENT			√
	→ Display Design Info → Design Input → that only columns (note walls N/A) th Ratio = 1 (ES). Struts/ties should be co (note wall N/A) is designed to carry at the should be at least 1/10 th of the stiffness of cl.2.5.4 BS8110-2 and is to be fully restra	▶ Unbraced Length L-Ratios} → check I at are strutted/tied in both direction apable of resisting 2.5% of the design point of lateral support as stipulated by of the columns, i.e. $\Sigma I_{beam}/L_{beam} \ge 0.10[\Sigma_{ained}]$ by a horizontal diaphragm (flo	Alternatively, included only if the number of storeys that the column spans is explicitly modelled in the analytical frame model, however with the disadvantage of loss of load within Story Forces in the particular storey only . [Visual]: Design → Concrete Frame Design Jubraced Length Ratio = 1, 2, 3 etc., noting ons may be considered Unbraced Length gn ultimate vertical load that the column cl.3.9.2.3 BS8110-1. Note that the struts/ties Elcolumn/Lcolumn] to be effective as suggested by or slab, note that flat slab also constitutes a least 1/10 th of the summation of column	
4.22	Recognition of Unbrac	ed Length Ratio ≥ 2 Wall/Colun Not on the Wall/Column Define	nn As Beam Supports ed Storey	
	Item	ВА	SAFE	
	Wall	N / A	N / A	
	Column	Recognized	Recognized	
4.3	Wall/Column Effective Length Fa	ctor		
4.31	 (Non-Sway) for columns (note walls (i) that exist in a coupled shear walls (ii) that exist in a coupled shear walls (ii) that have a total (of all column gross stiffness of the bracing election of the walls/columns at the fragmagnitude of shear force and the movement of that storey (inferred to the walls/columns at the fragmagnitude of shear force and the movement of that storey (inferred to the walls second-order amplified sway factor, m = unconservatively) (v) that are within a non-sway store that for significant buildings, Load Case Type → Buckling) should 	N/A) in a lateral stability system (E wall (minor plane only) / outrig amed) tube web (minor plane ments resisting lateral movement of blumns (note walls N/A) in que the bending moment back-calculated me extremity) based on the Mome bending moment (including ditto) ed from cl.6.2.5 ACI 318-14), and (exhibiting Q \leq 0.25 or $\lambda \geq 4.0$) bas analysis / P- Δ analysis / lateral lo $\lambda/(\lambda-1)$ performed (cl.6.2.6 and corey (exhibiting Q \leq 0.05 or $\lambda \geq 2$ ACI 318-14). a first principle eigenvalue buc d be performed to confirm the glo 318-14 and to verify the value for	nput → Design Type → check Braced S): - ger frame (outrigger columns only) only) lateral stability system (cl.3.8.1.5 n) gross stiffness ≤ 1/12 th of the total of that storey (cl.6.2.5 ACI 318-14), and estion) magnitude of shear force and by multiplying the push-pull axial forces ent Ratio Check ≤ 1/12 th of the total of the bracing elements resisting lateral sed on the Sway Susceptibility Check bads (wind, EQ) amplification with the cl.R6.7.1.2 ACI 318-14), or (albeit 20) based on the Sway Susceptibility ckling analysis (Define → Load Case → bal building buckling characteristics r m in m = $\lambda/(\lambda-1)$) and local mega	
4.32	 Design → Concrete Frame Design → (Sway) for columns (note walls N/A) (i) that exist in a coupled shear voluting columns) / (frame BS8110-1), or (ii) that have a total (of all column gross stiffness of the bracing election (iii) that exhibit a total (of all column gross stiffness of the bracing election (iii) that exhibit a total (of all column gross stiffness of the bracing election (iv) that exhibit a sway storey (based on cl.6.6.4.3(b) ACI 318-Note that for significant buildings, Load Case Type → Buckling) should 	Display Design Info → Design Inp in a lateral stability system (ES): - wall (major plane only) / mome ed) tube web (major plane on the ments resisting lateral movement of plumns (note walls N/A) in question the bending moment back-calculated me extremity) based on the Mome ending moment (<u>including</u> ditto) of ed from cl.6.2.5 ACI 318-14), and ((exhibiting Q > 0.05 or λ < 20) base -14). a first principle eigenvalue buck d be performed to confirm the glo 318-14 and to verify the value for	but \rightarrow Design Type \rightarrow check Unbraced ent frame / outrigger frame (except nly) lateral stability system (cl.3.8.1.5 n) gross stiffness > 1/12 th of the total of that storey (cl.6.2.5 ACI 318-14), or uestion) magnitude of shear force or by multiplying the push-pull axial forces ent Ratio Check > 1/12 th of the total of the bracing elements resisting lateral albeit unconservatively) sed on the Sway Susceptibility Check ching analysis (Define \rightarrow Load Case \rightarrow obal building buckling characteristics r m in m = $\lambda/(\lambda-1)$) and local mega	

ITEM	CONTENT	\checkmark				
4.33	Design \rightarrow Concrete Frame Design \rightarrow Display Design Info \rightarrow Design Input \rightarrow Design Type \rightarrow check manual Concrete Frame Design (Framing Type) Overwrites for columns (note walls N/A) in structures with transferred lateral stability (e.g. braced (non-sway) shear wall residential block on an unbraced (sway) moment frame car park podium, noting that should the car park podium floors be constructed in flat slabs instead of in beams and slabs, the unbraced (sway) mega columns beneath the transfer floor would effectively resist a primary stability base shear induced vierendeel moment over its height from the transfer floor to a base level that can effectively transfer the stability base shear into the foundations unless, and as highly recommended, a certain proportion of the existing shear walls are continued below the transfer floor to the foundations or if new shear walls are introduced below the transfer floor, yielding a scenario akin to the core and outrigger form of stability whereby the stability base moment is resolved into axial forces into the then braced (non-sway) (provided cl.6.2.5 and conservatively cl.6.6.4.3(b) ACI 318-14 are satisfied for a non-sway storey) mega columns and the stability base shear is transferred by the transfer floor diaphragm to the shear walls beneath the transfer floor into the foundations; note that even if the car park podium floors were constructed in beams and slabs, it is likely that the stability base shear will migrate to the usually stiffer shear walls if they are provided; note that a ULS shear stress check should be done on all stability base shear resisting elements) (ES).					
4.4	Wall/Column Base Support Conditions					
4.41	 TABLE → Model → Assignments → Joint Assignments → Joint Assignments – Restraints → check user-defined supports (Define → Spring Properties → Point/Line/Area Springs → introduce lateral and rotational flexibility): - Pad, Strip, Raft, Piled Raft Foundations Introduce lateral flexibility in both directions in accordance with soil stiffness. Introduce zero rotational flexibility in both planes. Piled Foundations (with Dropped or Integrated Pile Caps) Introduce lateral flexibility in both directions in accordance with soil stiffness. Introduce lateral flexibility in both directions in accordance with soil stiffness. Introduce lateral flexibility in both directions in accordance with soil stiffness. 					
4.42	Check stepped foundations levels relative to St00 (e.g. general pile cap level compared to the lift pile cap level) explicitly modelled in the analytical frame model St01 wall/column base node definitions.					
4.43	Check stepped foundations levels relative to St0i where $i \ge 1$ explicitly modelled in the analytical frame model St0i+1 wall/column base node definitions (check user-defined supports) noting that user-defined support types are defined in Assign \rightarrow Joint \rightarrow Restraints.					
5.0	MODELLING CHECKS					
5.1	General					
5.11	Check all elements modelled with their insertion lines/points closest to their centroid (ES).					
5.12	Check all elements modelled with their insertion lines/points closest to their centroid (ES). Check that secondary beam spans break at primary beam crossings and that primary beam spans break at wall/column crossings (ES). Check that offset beams (which are secondary beams that frame into the beam in question within the footprint of the wall/column) are avoided as far as it is practical (ES).					
	Check that secondary beam spans break at primary beam crossings and that primary beam spans break at wall/column crossings (ES). Check that offset beams (which are secondary beams that frame into the beam in question within the footprint					
5.12	 Check that secondary beam spans break at primary beam crossings and that primary beam spans break at wall/column crossings (ES). Check that offset beams (which are secondary beams that frame into the beam in question within the footprint of the wall/column) are avoided as far as it is practical (ES). Check 3D View with OPTION → Special Effects → {Object Shrink, Extrude Frame Objects, Extrude Shell Objects} for accuracy of modelling in particular: - slab and beam drops and soffit continuity (ES). consistency of inter-storey wall/column setting out (ES). multi-storey (with the number of storeys > 1 that the wall/column spans explicitly modelled in the analytical frame model) wall/column element spans, noting that only columns (note walls N/A) that are 					
5.12	 Check that secondary beam spans break at primary beam crossings and that primary beam spans break at wall/column crossings (ES). Check that offset beams (which are secondary beams that frame into the beam in question within the footprint of the wall/column) are avoided as far as it is practical (ES). Check 3D View with OPTION → Special Effects → {Object Shrink, Extrude Frame Objects, Extrude Shell Objects} for accuracy of modelling in particular: - slab and beam drops and soffit continuity (ES). consistency of inter-storey wall/column setting out (ES). multi-storey (with the number of storeys > 1 that the wall/column spans explicitly modelled in the analytical frame model) wall/column element spans, noting that only columns (note walls N/A) that are strutted/tied in both directions may be considered Unbraced Length Ratio = 1 (ES). Check validity of slab contributing to floor diaphragm for all dropped slabs, inclined slabs, slabs near inclined walls/columns and conservatively slabs near basement retaining walls to ensure that the stability base shear is 					
5.12 5.13 5.14	 Check that secondary beam spans break at primary beam crossings and that primary beam spans break at wall/column crossings (ES). Check that offset beams (which are secondary beams that frame into the beam in question within the footprint of the wall/column) are avoided as far as it is practical (ES). Check 3D View with OPTION → Special Effects → {Object Shrink, Extrude Frame Objects, Extrude Shell Objects} for accuracy of modelling in particular: - slab and beam drops and soffit continuity (ES). consistency of inter-storey wall/column setting out (ES). multi-storey (with the number of storeys > 1 that the wall/columns gnas explicitly modelled in the analytical frame model) wall/column element spans, noting that only columns (note walls N/A) that are strutted/tied in both directions may be considered Unbraced Length Ratio = 1 (ES). Check validity of slab contributing to floor diaphragm for all dropped slabs, inclined slabs, slabs near inclined walls/columns and conservatively slabs near basement retaining walls to ensure that the stability base shear is resisted by the walls/columns supporting the superstructure (ES). Check all cantilever beams are identified as such (ensuring the correct cantilever reinforcement detailing and the 					
5.12 5.13 5.14 5.15 5.16 5.2	Check that secondary beam spans break at primary beam crossings and that primary beam spans break at wall/column crossings (ES). Check that offset beams (which are secondary beams that frame into the beam in question within the footprint of the wall/column) are avoided as far as it is practical (ES). Check 3D View with OPTION → Special Effects → {Object Shrink, Extrude Frame Objects, Extrude Shell Objects} for accuracy of modelling in particular: - • slab and beam drops and soffit continuity (ES). • consistency of inter-storey wall/column setting out (ES). • multi-storey (with the number of storeys > 1 that the wall/column spans explicitly modelled in the analytical frame model) wall/column element spans, noting that only columns (note walls N/A) that are strutted/tied in both directions may be considered Unbraced Length Ratio = 1 (ES). Check validity of slab contributing to floor diaphragm for all dropped slabs, inclined slabs, slabs near inclined walls/columns and conservatively slabs near basement retaining walls to ensure that the stability base shear is resisted by the walls/columns supporting the superstructure (ES). Check all cantilever beams are identified as such (ensuring the correct cantilever reinforcement detailing and the correct deflection assessment based on cantilever span / depth ratios) (ES). Check all duplicate storeys share the same storey height (only beneath for the BA/STAGE methods) with their parent storey to ensure that wall/column clear heights are accurately calculated. If Unbraced Length Ratio > 1 is adopted for wall/column definitions, then the above requirement is to be likewise extended to multiple storeys.					
5.12 5.13 5.14 5.15 5.16	Check that secondary beam spans break at primary beam crossings and that primary beam spans break at wall/column crossings (ES). Check that offset beams (which are secondary beams that frame into the beam in question within the footprint of the wall/column) are avoided as far as it is practical (ES). Check 3D View with OPTION → Special Effects → {Object Shrink, Extrude Frame Objects, Extrude Shell Objects} for accuracy of modelling in particular: - • slab and beam drops and soffit continuity (ES). • consistency of inter-storey wall/column setting out (ES). • multi-storey (with the number of storeys > 1 that the wall/columns (note walls N/A) that are strutted/tied in both directions may be considered Unbraced Length Ratio = 1 (ES). Check validity of slab contributing to floor diaphragm for all dropped slabs, inclined slabs, slabs near inclined walls/columns and conservatively slabs near basement retaining walls to ensure that the stability base shear is resisted by the walls/columns supporting the superstructure (ES). Check all cantilever beams are identified as such (ensuring the correct cantilever reinforcement detailing and the correct deflection assessment based on cantilever span / depth ratios) (ES). Check all duplicate storeys share the same storey height (only beneath for the BA/STAGE methods) with their parent storey to ensure that wall/column diemensions with their parent storey to ensure that wall/column dimensions with their parent storey to ensure that wall/column dimensions with their parent storey to ensure correct load take down. Section and Material Properties % Reduction in Rigidity in BA #A Material Properties <td></td>					
5.12 5.13 5.14 5.15 5.16 5.2	Check that secondary beam spans break at primary beam crossings and that primary beam spans break at wall/column crossings (ES). Check that offset beams (which are secondary beams that frame into the beam in question within the footprint of the wall/column) are avoided as far as it is practical (ES). Check 3D View with OPTION → Special Effects → {Object Shrink, Extrude Frame Objects, Extrude Shell Objects} for accuracy of modelling in particular: - • slab and beam drops and soffit continuity (ES). • consistency of inter-storey wall/column setting out (ES). • multi-storey (with the number of storeys > 1 that the wall/column spans explicitly modelled in the analytical frame model) wall/column element spans, noting that only columns (note walls N/A) that are strutted/tied in both directions may be considered Unbraced Length Ratio = 1 (ES). Check validity of slab contributing to floor diaphragm for all dropped slabs, inclined slabs, slabs near inclined walls/columns and conservatively slabs near basement retaining walls to ensure that the stability base shear is resisted by the walls/columns supporting the superstructure (ES). Check all cantilever beams are identified as such (ensuring the correct cantilever reinforcement detailing and the correct deflection assessment based on cantilever span / depth ratios) (ES). Check all duplicate storeys share the same storey height (only beneath for the BA/STAGE methods) with their parent storey to ensure that wall/column clear heights are accurately calculated. If Unbraced Length Ratio > 1 is adopted for wall/column definitions, then the above requirement is to be likewise extended to multiple sto					

CONTENT		
SLS DL, SDL, LL (V) ^{#C}	$\begin{array}{c} 50\% \{GJ\} \text{ Uncracked, Creep} \\ k_{E}=1.0, k_{I}=1.0, k_{J}=1.0, k_{A}=1.0 \\ \hline [2.0 x Default Parameters] \\ \hline \textbf{RC or Class 3 PT} \\ 50\% \{EA\} \text{ Uncracked, Creep} \\ 25\% \{EI\} \text{ Cracked, Creep} \\ 50\% \{GA_{s}\} \text{ Uncracked, Creep} \\ 25\% \{GJ\} \text{ Cracked, Creep} \\ k_{E}=1.0, k_{I}=0.5, k_{J}=0.5, k_{A}=1.0 \\ \hline [Default Parameters] \end{array}$	50%{GA _s } Uncracked, Creep 50%{GJ} Uncracked, Creep k _E =1.0, k _I =1.0, k _J =1.0, k _A =1.0 [Default Parameters]
ULS EQ (H) ^{#B, #F}	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Class 1 PT, Class 2 PT, Cor Class 3 PT 50%{EA} Uncracked, Creep 25%{EI} Cracked, Creep 25%{GJ} Cracked, Creep k _E =1.0, k _I =0.5, k _J =0.5, k _A =1.0 [~0.5 x Default Parameters]
SLS NHF (H) ^{#C, #D}	Class 1 PT or Class 2 PT 100%{EA} Uncracked, No Creep	
SLS Wind (H) ^{#C, #D}	100%{EI} Uncracked, No Creep	
SLS Vibration (H) ^{#C, #D}	$100\%{GA_s} Uncracked, No Creep$ $100\%{GJ} Uncracked, No Creep$ $k_E=2.0, k_I=1.0, k_J=1.0, k_A=1.0$ $[4.0 x Default Parameters]$ $RC or Class 3 PT$ $100\%{EA} Uncracked, No Creep$ $50\%{EI} Cracked, No Creep$ $100\%{GA_s} Uncracked, No Creep$ $50\%{GJ} Cracked, No Creep$ $k_E=2.0, k_I=0.5, k_J=0.5, k_A=1.0$ $[2.0 x Default Parameters]$	Class 1 PT, Class 2 PT, RC or Class 3 PT 100%{EA} Uncracked, No Creep 100%{EI} Uncracked, No Creep 100%{GA _s } Uncracked, No Creep 100%{GJ} Uncracked, No Creep k _E =2.0, k _I =1.0, k _J =1.0, k _A =1.0 [2.0 x Default Parameters]
SLS EQ (H) ^{#C, #D, #F}	Class 1 PT or Class 2 PT $100\%{EA}$ Uncracked, No Creep $100\%{EI}$ Uncracked, No Creep $100\%{GA_s}$ Uncracked, No Creep $100\%{GJ}$ Uncracked, No Creep $100\%{GJ}$ Uncracked, No Creep $100\%{GJ}$ Uncracked, No Creep $100\%{EA}$ Uncracked, No Creep $100\%{EA}$ Uncracked, No Creep $100\%{EA}$ Uncracked, No Creep $50\%{EI}$ Cracked, No Creep $100\%{GA_s}$ Uncracked, No Creep $50\%{GJ}$ Cracked, No Creep $50\%{GJ}$ Cracked, No Creep $50\%{GJ}$ Cracked, No Creep $k_E=2.0, k_I=0.5, k_J=0.5, k_A=1.0$ $[2.0 \times Default Parameters]$	Class 1 PT, Class 2 PT, Cor Class 3 PT 100%{EA} Uncracked, No Creep 50%{EI} Cracked, No Creep 100%{GAs} Uncracked, No Creep 50%{GJ} Cracked, No Creep k _E =2.0, k _I =0.5, k _J =0.5, k _A =1.0 [~1.0 x Default Parameters]
ULS Sway Susceptibility (NHF) (H) ^{#E}	Class 1 PT or Class 2 PT 100%{EA} Uncracked, No Creep	
ULS Sway Susceptibility (Wind) (H) ^{#E}	70%{EI} Uncracked, No Creep 70%{EI} Uncracked, No Creep 70%{GJ} Uncracked, No Creep k _E =2.0, k _I =0.7, k _J =0.7, k _A =1.0 [~2.8 x Default Parameters] RC or Class 3 PT 100%{EA} Uncracked, No Creep 35%{EI} Cracked, No Creep 100%{GA _s } Uncracked, No Creep	Class 1 PT, Class 2 PT, RC or Class 3 PT 100%{EA} Uncracked, No Creep 70%{EI} Uncracked, No Creep 100%{GAs} Uncracked, No Creep 70%{GJ} Uncracked, No Creep k _E =2.0, k _I =0.7, k _J =0.7, k _A =1.0 [~1.4 x Default Parameters]

EM				
	CONTENT			
		$k_{\rm E}=2.0, k_{\rm I}=0.35, k_{\rm J}=0.35, k_{\rm A}=1.0$		
	 ULS Sway Susceptibility (EQ) (H) #E, #F #A: These values of kE, kI, kJ and kA w has been reduced to account for creep residential buildings as stipulated by cl.3 #B: RC or Class 3 PT stiffness values f the Design and Construction of RC Flat Slabs to BS8100 (CIRIA) pp.35 are ad column) : (slab, beam) elements of 1.0 stiffness reduction factor 0.70 is not add other hand is included for ULS effects axial shortening of walls/columns. #C: RC or Class 3 PT stiffness values wall, column) of cl.66.3.1.1 ACI 318-1 1.00Ig (wall, column), 0.50Ig (beam) a for SLS design of 1.00Ig (wall, column) RC Flat Slabs (The Concrete Society) pp #D: The elastic modulus, E value incor ULS load combination cases involving w is deemed negligible as the ratio of st stiffness without incorporating creep ef 	[~1.4 x Default Parameters] Class 1 PT or Class 2 PT 100%{EA} Uncracked, No Creep 70%{EI} Uncracked, No Creep 70%{GJ} Uncracked, No Creep 8 C or Class 3 PT 100%{EA} Uncracked, No Creep 35%{EI} Cracked, No Creep 35%{GJ}	Class 1 PT, Class 2 PT, Cor Class 3 PT 100%{EA} Uncracked, No Creep 35%{EI} Cracked, No Creep 100%{GA ₀ } Uncracked, No Creep 35%{GJ} Cracked, No Creep $k_E=2.0, k_I=0.35, k_J=0.35, k_A=1.0$ [~0.7 x Default Parameters] n the premise that the elastic modulus, E value the elastic modulus, E of 0.50 for typical office / Elabs to BS8100 (CIRIA) pp.34 is adopted. II, column) and 0.50Ig (slab) of TR.64 Guide to ad by cl.14.5.4 of Report 110 Design of RC Flat relative stiffness for ULS design between (wall, 1.1 ACI 318-14, i.e. in 0.70 : 0.35 although the negligible effect on the ULS effects. Creep on the erated by differential (elastic, creep, shrinkage) all, column), 0.35Ig (beam) and 1.00Ag (beam, ated within cl.6.6.3.2.2 ACI 318-14 resulting in lopted. Similar IC or Class 3 PT stiffness values (TR.64 Guide to the Design and Construction of gn of RC Flat Slabs to BS8100 (CIRIA) pp.35. or ULS NHF / ULS wind / ULS EQ as part of the e short-term phenomena), as the effect of which lab, beam) elements is similar to their ratio of (SLS wind / SLS EQ / SLS vibration design, the	
	stiffness without incorporating creep ef elastic modulus, E without incorporating #E: RC or Class 3 PT stiffness values wall, column) of cl.6.6.3.1.1 ACI 318- deflections of the frame are calculated permissible to calculate Q using 1.2 tim first order service load story deflections. #F: Note that in certain circumstances,	Tects. On the other hand, for SLS NHF, creep effects is employed. for ULS design governed by 0.70Ig (wa 4 are adopted. Further, it is given in using service loads and the service loads es the sum of the service gravity loads, it may be deemed more appropriate to s due to the large displacements involv		
22	Check slab cover 25mm internal a roof) (ES).	nd 40mm external (e.g. ground, p	oodium deck, swimming pool, water tank,	
	$\begin{array}{l} \text{MODEL} \rightarrow \text{Properties} \rightarrow \text{Frame Sections (of beams)} \rightarrow \text{Property Modifiers} \rightarrow \text{check Torsional Constant (i.e. the torsional constant factor)} = \{ \textbf{0.01 Class 1 PT} \text{ or Class 2 PT} \mid \textbf{0.01 RC} \text{ or Class 3 PT} \} \text{ for models without} \end{array}$			
23	torsional constant factor) = {0.01 equilibrium torsional beams.	Class 1 PT or Class 2 PT 0.01	L RC or Class 3 PT for models without	
23	torsional constant factor) = {0.01 equilibrium torsional beams. MODEL → Properties → Frame Sec torsional constant factor) = {1.0	Class 1 PT or Class 2 PT 0.01 ctions (of beams) \rightarrow Property Mod 0 Class 1 PT or Class 2 PT 0. g. curved beams and straight be transfer floors)). Torsional stiffness fer beams, and ar buildings	L RC or Class 3 PT for models without ifiers \rightarrow check Torsional Constant (i.e. the 50 RC or Class 3 PT for models with eams that frame eccentrically to columns	
23 24	torsional constant factor) = {0.01 equilibrium torsional beams. MODEL → Properties → Frame Sec torsional constant factor) = {1.0 equilibrium torsional beams (e (especially heavily loaded beams in (i) heavily loaded straight trans (ii) straight edge beams in regu experiencing significant compatible	Class 1 PT or Class 2 PT 0.01 ctions (of beams) \rightarrow Property Mod 0 Class 1 PT or Class 2 PT 0. g. curved beams and straight be transfer floors)). Torsional stiffness fer beams, and ar buildings	L RC or Class 3 PT for models without ifiers \rightarrow check Torsional Constant (i.e. the 50 RC or Class 3 PT for models with eams that frame eccentrically to columns is may also be considered for: -	
23 24	torsional constant factor) = {0.01 equilibrium torsional beams. MODEL → Properties → Frame Sec torsional constant factor) = {1.0 equilibrium torsional beams (e (especially heavily loaded beams in (i) heavily loaded straight trans (ii) straight edge beams in regu experiencing significant compatible	Class 1 PT or Class 2 PT 0.01 ctions (of beams) \rightarrow Property Mod D Class 1 PT or Class 2 PT 0. g. curved beams and straight be transfer floors)). Torsional stiffness fer beams, and ar buildings lity torsion .	L RC or Class 3 PT for models without ifiers \rightarrow check Torsional Constant (i.e. the 50 RC or Class 3 PT for models with eams that frame eccentrically to columns is may also be considered for: -	
23 24	torsional constant factor) = {0.01 equilibrium torsional beams. MODEL → Properties → Frame Sec torsional constant factor) = {1.0 equilibrium torsional beams (e (especially heavily loaded beams in (i) heavily loaded straight trans (ii) straight edge beams in regu experiencing significant compatibil Scenario Straight (Between Columns)	Class 1 PT or Class 2 PT 0.01 ctions (of beams) → Property Mod O Class 1 PT or Class 2 PT 0. g. curved beams and straight be transfer floors)). Torsional stiffness fer beams, and ar buildings lity torsion.	L RC or Class 3 PT} for models without ifiers → check Torsional Constant (i.e. the 50 RC or Class 3 PT} for models with earns that frame eccentrically to columns is may also be considered for: - rsion	
.23 .24 .25	torsional constant factor) = {0.01 equilibrium torsional beams. MODEL → Properties → Frame Sec torsional constant factor) = {1.0 equilibrium torsional beams (e (especially heavily loaded beams in (i) heavily loaded straight trans (ii) straight edge beams in regu experiencing significant compatible Scenario	Class 1 PT or Class 2 PT 0.01 ctions (of beams) → Property Mod O Class 1 PT or Class 2 PT 0. g. curved beams and straight be transfer floors)). Torsional stiffness fer beams, and ar buildings lity torsion. ullibrium and Compatibility Tor Equilibrium Torsion Not Generated	L RC or Class 3 PT} for models without ifiers → check Torsional Constant (i.e. the 50 RC or Class 3 PT} for models with eams that frame eccentrically to columns is may also be considered for: - rsion Compatibility Torsion Generated	
.23 .24	torsional constant factor) = {0.01 equilibrium torsional beams. MODEL → Properties → Frame Sec torsional constant factor) = {1.0 equilibrium torsional beams (e (especially heavily loaded beams in (i) heavily loaded straight trans (ii) straight edge beams in regu experiencing significant compatible Straight (Between Columns) Continuous Primary Beams Facetted (Between Columns) Continuous Primary Beams	Class 1 PT or Class 2 PT 0.01 ctions (of beams) → Property Mod D Class 1 PT or Class 2 PT 0. g. curved beams and straight be transfer floors)). Torsional stiffness fer beams, and ar buildings lity torsion. uilibrium and Compatibility Tor Equilibrium Torsion Not Generated	L RC or Class 3 PT} for models without ifiers → check Torsional Constant (i.e. the 50 RC or Class 3 PT} for models with earns that frame eccentrically to columns is may also be considered for: - rsion Compatibility Torsion	
23 24	torsional constant factor) = {0.01 equilibrium torsional beams. MODEL → Properties → Frame Sec torsional constant factor) = {1.0 equilibrium torsional beams (e (especially heavily loaded beams in (i) heavily loaded straight trans (ii) straight edge beams in regu experiencing significant compatibu Scenario Straight (Between Columns) Continuous Primary Beams Facetted (Between Columns)	Class 1 PT or Class 2 PT 0.01 ctions (of beams) → Property Mod O Class 1 PT or Class 2 PT 0. g. curved beams and straight be transfer floors)). Torsional stiffness fer beams, and ar buildings lity torsion. ullibrium and Compatibility Tor Equilibrium Torsion Not Generated	L RC or Class 3 PT} for models without ifiers → check Torsional Constant (i.e. the 50 RC or Class 3 PT} for models with eams that frame eccentrically to columns is may also be considered for: - rsion Compatibility Torsion Generated	

ITEM	CONTENT					\checkmark	
	 (a) as per cl.5.4.1.2.1 and cl.5.5.1.2.1, primary seismic beam eccentricity, e ≤ column orthogonal dim, b_c / 4 (DCM, DCH) primary seismic beam width, b_w ≤ min {column orthogonal dim, b_c + beam depth, h_w, 2b_c} (DCM, DCH) primary seismic beam width, b_w ≥ 200mm (DCH) (b) as per cl.5.4.1.2.2 and cl.5.5.1.2.2, primary seismic column width, h_c ≥ (column clear height, l_d / 2) / 10 (DCM, DCH) primary seismic column width, h_c ≥ 250mm (DCH) 						
5.27	 For models with EQ loads stabilised by stability walls, as per the requirements of BS EN1998-1, the following geometrical constraints need to be achieved: - (a) as per cl.5.4.1.2.3 and cl.5.5.1.2.3, ductile wall thickness, b_{wo} ≥ max {150mm, clear storey height, h_s / 20} (DCM, DCH) (b) as per cl.5.4.3.4.2 and cl.5.5.3.4.5, ductile wall boundary element requirements (DCM, DCH) 						
5.3		zontal Framing					
5.31		Requirement of Eleme lement Insertion Point					
	Element	Slab	Beam	Wall	Column		
	Slab	N/A	Not Required #A	Not Required #B	Not Required #C		
	Beam	N/A	Required ^{#D}	Required #E	Required #E		
	Wall	N/A	N/A	Required #F	Required #F		
	Column	N/A	N/A	N/A	N/A		
	#D: Check secon #E: Check prima #F: Check wall ir Note that in all	line or within the element	ame onto primary beam inse e onto wall/column insertion l/column insertion lines/poi it may frame through th	ertion lines (ES). n lines/points (ES). nts (ES). ne other element (but i fically denoted otherwis	nstead only onto element e.		
5.32	Element Slab	Method 1 (Insignificant Drops N/A		Method 2 (Significant Drops by explicitly modelling t			
	Beam	N/A	Defining drops /	frame model inclination by explicitly analytical frame mod	y modelling them in the		
	Wall	N/A		by explicitly modelling t frame model			
	Column	N/A	Defining drops	by explicitly modelling t frame model	hem in the analytical		
5.4	Element Verti	cal Framing					
5.41	onto E	Requirement of E lement Insertion Point	lement to Frame Vert				
	Element	Slab	Beam	Wall	Column		
	Slab	N/A	N/A	N/A	N/A		
	Beam	N/A	N/A	N/A	N/A		
	Wall	Not Required #A	Required #B2	Required #B1, #C	Required #B1		
	Column	Not Required ^{#D}	Required #E	Required #F	Required #F		
	#B1: Check wal analogy design minimum of the transferred wall (#B2: Check wall design for the element). Manual #C: Check wall ir #D: Check colum #E: Check colum	for the transferred wall ar length of the support or 0.2 ES). insertion lines frame onto t	transfer column insertion ad the transferred wall be 2 x clear span, ref. CIRIA ransfer beam insertion line the diagonal compression design for the transfer bea l insertion lines (ES). frame onto footprint of transfer beam insertion	n points. Manually perfor aring stress check to (Guide 2 and thickness of es. Manually perform the s element) and transfer b am. (ES). ansfer slab (ES). lines (ES).	m the strut and tie truss 0.40f _{cu} at supports (over the the transferred wall) for the trut and tie truss analogy beam (acting as the tension		

ITEM	CONTENT						\checkmark			
5.42	and bendin	g moments) idealisatio	n (Mid-Pier		Intil convergence of the wall axial forces sferred walls at the transfer level for a ion to the load transfer.				
5.43					ıltiple transfer walls / trans n (Mid-Pier idealisation N/A	fer columns / transfer beams along the) is used.				
5.44	centroids ar beam rigid	nd coincide links are not	e nt with eac t created. C	h other as heck transfe	beam torsions due to any i	elled with their insertion lines at their relative offset will not be generated as and transferred column are modelled				
5.45				Modellin	g of Transferred Walls					
	Transfer red Wall	Transfer Wall/ Column #c	Rigid Zones	Overlap #A		Remark				
	Wall #B	Wall #B	None	No Overlap	moment and shear force					
	Wall ^{#B}	Column	None	No Overlap		prrect flexible representation of transfer beam bending poment and shear force effects				
	Wall #B	Wall ^{#B}	None #D	Full / Partial Overlap	Correct flexible represe moment and shear force	entation of transfer beam bending e effects				
	Wall ^{#B}	Column	None	Full / Partial Overlap	Correct flexible represe moment and shear force	sentation of transfer beam bending ce effects				
	Wall #B	Wall ^{#B}	Max	No Overlap	N/A					
	Wall #B	Column	Max	No Overlap	N/A					
	Wall #B	Wall ^{#B}	Max ^{#D}	Full / Partial Overlap	N/A					
	Wall #B	Column	Max	Full / Partial Overlap	N/A					
	#B : Wall reinvestigated #C : With reincorporate ti #D : Check Maximum i	fer to FE Sho until converge gards to the he reduction of for models w	ell Model wa ence of the m wall/column due to the de vith transferre E. As an alt	II (Mid-Pier waximum supp effective len pth of the inc ed walls ove ernative to s	port shear force effects on tran gth calculation, the clear heig coming beam(s). rlapping with transfer walls/c	I walls, smaller shell mesh sizes should be sfer beams. ght computation for walls/columns does not columns, specify Rigid-Zones as None or kimum, specify walls instead of columns to				
5.5	Housekee									
5.51	Edit \rightarrow Auto	Relabel All	\rightarrow re-label	all slabs and	d beams independently betw	ween storeys.				
5.52	Edit \rightarrow Auto	Relabel All	\rightarrow re-label	all walls and	d columns consistently betw	veen storeys.				
5.6	Model Inte									
5.61	Analyze \rightarrow									
5.62	_		_	_	nts to Nearest Frame or Edg	ge → OK.				
6.0	METHOD O									
6.1 6.11	method of	Slab Analy	sis and De	esign						
0.11		lethod of S			Method 1	Method 2				
	Ana	alysis and I	Design		nventional Codified	Full Finite Element Method Design Method				
		Slab Load	ls		N/A	Uniform, patch, line or point loads				
	9	Slab Openi	ngs		N/A	Supported				
		gular Floor	-		N/A	Supported				
		- Flat Slab			N/A	Supported				
			-			Supported				

ITEM	CONTENT								√
6.21	Method of Load Applica	tion	Met	hod 1		Method	2		
	onto Beams		Yield Line Method		Fin	ite Element	Method		
	Slab Loads		Uniform loads			N/A			
	Slab Openings	penings		pported		N/A			
	Irregular Floor Plate	es	Not Su	pported		N/A			
6.3	Method of Frame Analysis								
6.31				Met	hod of Fram	e Analysis			
	Vertical Load Functiona Lateral Load Stabili		and	Method 1		Method	2		
				BA		STAGE			
	Beam-Column with	Shear Wall		Supported		Supporte	d		
	Beam-Column as Mo	ment Frame	e	Supported		Supporte	d		
	Flat Slab-Column with	n Shear Wa	II S	Supported #A		Supported	#A		
	Flat Slab-Column as M	oment Fran	ne S	Supported #B		Supported	#B		
	#A : Check flat slab / flat transforshear walls.	er slab analys	is undertaken	with Method 1	or Method 2 v	with lateral loa	ds being resiste	ed by	
	#B: Check flat slab / flat transfe			ith Method 1 or	Method 2 with	n lateral loads l	being resisted b	y flat	
6.32	slab / flat transfer slab and colum	ins moment fr	ames.	Transferred	Beam/Slab			1	
				d Wall/Colu	mn on Trans	fer Beam/S			
			LS and SLS Effects ULS and SLS Effects on Transferred on Transfer						
	Method of Frame Analysis		m or		Beam				
		Beam or	Column	Slab		Clah in	Slab		
		Wall/ Column	Slab in Vicinity		Beam	Slab in Vicinity			
	1 BA	Supported	Supported	Supported	Supported	Supported	Supported		
		#A, #B Supported	#A, #B Supported	#A, #B Supported	#c Supported	#D Supported	^{#D} Supported		
	2 STAGE #A: Check that the envelope	#A, #B	#A, #B	#A, #B	#C	#D	#D		
	transferred slabs in vicinity, tran Method 2) supports the effects o and superstructure slabs supports of adjacent walls/columns. The L axial shortening. Staged construct creep, shrinkage) axial shortening #B : Check that Method 1 (mor settlement of transferred beam slabs . #C : Check that Method 2 is used of the transfer beam resulting in I #D : Check that Method 2 is used walls/columns on transfer be in larger action effects (forces, m	Insferred slabs of differential ed on walls/cc JLS load combi- tion analysis r g. e importantly as, transferred d to evaluate t larger action e d to evaluate f ams as Metho	and transferre support sett Jumns on tran binations inhered nay be perform than Method slabs in vicini the effects on t ffects (forces, i the effect of we bind 2 allows on	d walls/column lement on sup sfer beams of ently include th ned to reduce th 2) is adopted ty, transferred he transfer be moments) on th alls/columns on ally limited flex	is, noting that perstructure bear in transfer slat e effects of dif he magnitude of to cater for th slabs and trans transfer bear in transfer slat ibility of the tra	Method 1 (mo ams, superstruct os (meshed sl ferential (elast of the effects of e effects of di sferred walls/c od 2 allows on m. os and on slab unsfer slab / tra	ore prominently cture slabs in vi labs) or due to ic, creep, shrini f differential (el ifferential sup olumns on trai oly limited flex os in the vicini	than cinity DAS (age) astic, port ibility ty of	
6.33				Method o	of Frame Ana	alysis			
	Item		Meth	nod 1		Method	2		
			:	A		STAGE			
	Effect of Continuity on Bo Loading Tributary	eam		orted		Supporte			
	Effect of Flat Slabing in B Column Vertical Load Functional Framing	leam-	Supp	orted		Supporte	d		
	Pattern Loading		Supp	orted		Supporte	d		
	Effect of Slabs in Resistir Torsion of Beams	ng	Supp	ortod		Supporte			

ITEM	CONTENT			
7.0	SLAB ANALYSIS AND DESIGN CHECKS			
7.1	General			
7.11	In RC models, check sufficiency of rebar in orthogonal directions to fully m In PT models, check sufficiency of tendons (and rebar) in orthogonal directions and the sufficiency of tendons (and rebar) in orthogonal directions (and reb		h slab (ES).	
7.2	Conventional Codified BS8110 Coefficients Method	,	. ,	
7.21	Manually check sufficiency of rebar based on conventional codified BS8110 coefficients method in RC models (ES).			
7.3	Full FE Method Design Method			
7.31	MODEL → Properties → Frame Sections (of beams) → Property Modifier (i.e. uncracked) for Class 1 PT or Class 2 PT and 0.50 (i.e. cracked) for R → Frame Assignments → Property Modifiers are selected. MODEL → Properties → Slab Sections → Modifiers → check (m11, m22, r 1 PT or Class 2 PT and 0.50 (i.e. cracked) for R or Class 3 PT whilst ens Stiffness Modifiers are selected. SAFE → check Stiffness Factors (i.e. EI) for slab and beam are 1.00 (i.e. and 0.50 (i.e. cracked) for R or Class 3 PT (ES).	C or Class 3 PT w m12) are 1.00 (i. suring OPTION →	hilst ensuring OPTI e. uncracked) for Cl Shell Assignments	ON ass ; →
7.32	Positive and Negative Moment Factors for SA	AFF Effects		
		Positive Moment Factor	Negative Moment Factor	
	(Less conservative) elasto-plastic slab design (assuming conditions of cl.3.5.2.3 BS8110-1 satisfied)	1.2	0.8	
	(More conservative) elastic slab design (assuming conditions of cl.3.5.2.3 BS8110-1 satisfied)	1.0	1.0	
	(More conservative) elastic slab design with equivalent pattern loading (assuming conditions of cl.3.5.2.3 BS8110-1 not satisfied)	1.2	1.0	
7.33	SAFE \rightarrow check animated deflections for modelling accuracy (ES).		·	
	average precompression (ES). RC or PT Deflection Checks SAFE \rightarrow check TLS = DL+ PT deflections \leq {[span/500 to span/350].C ₁ SAFE \rightarrow check SLS=DL+SDL+LL+ PT deflections \leq [span/250].C ₁ (ES). SAFE \rightarrow check kc.(DL+SDL)+LL+kc,pt. PT deflections \leq {[span/500 to term also includes the total (elastic, creep, shrinkage) axial shortening of SAFE \rightarrow check kc.(DL+SDL)+LL+kc,pt. PT deflections at façade beams creep term also includes the total (elastic, creep, shrinkage) axial shorten Note C ₁ = {0.8 for flanged beams, 10.0/span(m) for spans > 10.0m, 0.9 f cl.3.4.6.3 and cl.3.4.6.4 BS8110-1 and cl.3.2.1.1 and cl.3.2.1.2 BS8110-2 equating 0.5.(1-0.4)DL+1.0SDL=kc.(DL+SDL) based on multiplying factor	span/350].C ₁ , 20 the <u>one</u> storey in $s \leq \{[span/1000]$ ning of the <u>one</u> st for flat slabs}. No 2. Note creep fac or 0.5 for the tot	n question (ES). C_1 , 20mm}, note orey in question (E) te deflection criteria tor, k_c calculated fr al DL creep deflect	the S). a to
	component (as opposed to the instantaneous deflection component) component of DL creep deflection after 1 month (cl.7.3 BS8110-2), givin likewise creep factor, $k_{c,PT}$ calculated as $(1-0.5/K_{LT}.K_{ST}).(1-0.4)=0.2625$.			tion 0%
	component (as opposed to the instantaneous deflection component component of DL creep deflection after 1 month (cl.7.3 BS8110-2), givin			tion 0%
	component (as opposed to the instantaneous deflection component component of DL creep deflection after 1 month (cl.7.3 BS8110-2), givin likewise creep factor, $k_{c,PT}$ calculated as $(1-0.5/K_{LT}.K_{ST}).(1-0.4)=0.2625$.	Ls : slab deflect LsB : secondary deflection chec	DSDL]/[DL+SDL]. N tion check / beam :k eam deflection lumn to	tion 0%

ITEM	CONTENT	\checkmark
	(ES).	
7.35	Tendon Modelling Check tendons based on prestress force and eccentricity required for load balancing and prestress force for average precompression (ES).	
	RC or PT Design Strip Support Lines, RC or PT Design Strip Tributaries and RC or PT Design Strip Design Sections Frequency	
	Check design strip support lines in X/Y directions (ES). Check design strip tributaries in X/Y directions and design strip design sections frequency for RC (column and middle design strip) or PT (full tributary width design strip) (ES).	
	 FE Analysis Method RC Analysis and Design SAFE → check RC analysis and design in X/Y directions (ES) → check ULS bending effects M_{ULS,E/E}, note w.o./w. the <u>differential</u> (elastic, creep, shrinkage) axial shortening of <u>adjacent</u> supports. → check ULS shear effects V_{ULS,E/E}, note w.o./w. the <u>differential</u> (elastic, creep, shrinkage) axial shortening of <u>adjacent</u> supports. 	
	RC Design Strip Design Sections FE Analysis Method Integration of Effects Analysis and RC Design Strip Design Sections Design	
	SAFE \rightarrow check design strip design sections C analysis and design in X/Y directions (ES) \rightarrow check ULS bending effects M _{ULS,E/E} based on 1.4 x tributary width x (15.0-25.0kPa) x L ² /12, note w.o./w. the <u>differential</u> (elastic, creep, shrinkage) axial shortening of <u>adjacent</u> supports. \rightarrow check ULS shear effects V _{ULS,E/E} based on 1.4 x tributary width x (15.0-25.0kPa) x L/2, note w.o./w. the <u>differential</u> (elastic, creep, shrinkage) axial shortening of <u>adjacent</u> supports. \rightarrow check rebar areas (to resist ULS bending) required {As(d)1, As(d)2}, noting minimum steel. \rightarrow check ULS shear capacity , V _u is greater than ULS shear effects V _{ULS,E/E} together with the associated	
	required shear links $A_{sv,req}/S$. SAFE \rightarrow check rebar (to resist ULS bending) required in X/Y directions (ES).	
	 FE Analysis Method PT Analysis and Design SAFE → check PT analysis and design in X/Y directions (ES) → check TLS/SLS bending effects M_{TLS/SLS,E/E}+M_{TLS/SLS,E/L} are minimal. → check ULS bending effects M_{ULS,E/E}+M_{ULS,S/E}, note w.o./w. the <u>differential</u> (elastic, creep, shrinkage) axial shortening of <u>adjacent</u> supports. Note by convention, +ve bending moment is sagging and -ve bending moment is hogging (<i>consistent</i> with 	
	SAFE). \rightarrow check TLS/SLS average precompression 0.7-2.5N/mm ² for slab and 2.5-4.5N/mm ² for beam. \rightarrow check TLS top stress $f'_{min,t} \le f'_{t} \le f'_{max,t}$	
	$\begin{split} BM: & \ -1.0 \le \mathbf{f'_t} \le 0.50 f_{ci} \ [CL1] \ \ -0.36 \sqrt{f_{ci}} \le \mathbf{f'_t} \le 0.50 f_{ci} \ [CL2] \ \ -0.25 f_{ci} \le \mathbf{f'_t} \le 0.50 f_{ci} \ [CL3] \ \\ FS: & \ -1.0 \le \mathbf{f'_t} \le 0.24 f_{ci} \ [CL1] \ \ -0.36 \sqrt{f_{ci}} \le \mathbf{f'_t} \le 0.24 f_{ci} \ [CL2] \ \ -0.45 \sqrt{f_{ci}} \le \mathbf{f'_t} \le 0.24 f_{ci} \ [CL3] \ \\ \end{split}$	
	→ check TLS bottom stress $f'_{min,b} \le f'_{b} \le f'_{max,b}$ BM: -1.0 ≤ $f'_{b} \le 0.50f_{ci}$ [CL1] -0.36 $\sqrt{f_{ci}} \le f'_{b} \le 0.50f_{ci}$ [CL2] -0.25 $f_{ci} \le f'_{b} \le 0.50f_{ci}$ [CL3] FS: -1.0 ≤ $f'_{b} \le 0.33f_{ci}$ [CL1] -0.36 $\sqrt{f_{ci}} \le f'_{b} \le 0.33f_{ci}$ [CL2] -0.45 $\sqrt{f_{ci}} \le f'_{b} \le 0.33f_{ci}$ [CL3]	
	→ check SLS top stress $f_{min,t} \le f_t \le f_{max,t}$ BM: -0.0 ≤ $f_t \le 0.33f_{cu}$ [CL1] -0.36 $\sqrt{f_{cu}} \le f_t \le 0.33f_{cu}$ [CL2] -<> ≤ $f_t \le 0.33f_{cu}$ [CL3] FS: -0.0 ≤ $f_t \le 0.33f_{cu}$ [CL1] -0.36 $\sqrt{f_{cu}} \le f_t \le 0.33f_{cu}$ [CL2] -0.45 $\sqrt{f_{cu}} \le f_t \le 0.33f_{cu}$ [CL3] Note -<> = MAX {-0.25f_{cu}, (0.7-1.1).(-0.58 $\sqrt{f_{cu}}$ to -0.82 $\sqrt{f_{cu}}$)-4N/mm ² /1.0%}.	
	→ check SLS bottom stress $f_{min,b} \le f_b \le f_{max,b}$ BM: -0.0 ≤ $f_b \le 0.40f_{cu}$ [CL1] -0.36 $\sqrt{f_{cu}} \le f_b \le 0.40f_{cu}$ [CL2] -<> ≤ $f_b \le 0.40f_{cu}$ [CL3] FS: -0.0 ≤ $f_b \le 0.24f_{cu}$ [CL1] -0.36 $\sqrt{f_{cu}} \le f_b \le 0.24f_{cu}$ [CL2] -0.45 $\sqrt{f_{cu}} \le f_b \le 0.24f_{cu}$ [CL3] Note -<> = MAX {-0.25f_{cu}, (0.7-1.1).(-0.58 $\sqrt{f_{cu}}$ to -0.82 $\sqrt{f_{cu}}$)-4N/mm ² /1.0%}. Note by convention, +ve stress is compressive and -ve stress is tensile (<i>inconsistent</i> with SAFE).	
	PT Design Strip Design Sections FE Analysis Method Integration of Effects Analysis and PT Design Strip Design Sections Design	
	SAFE → check design strip design sections PT analysis and design in X/Y directions (ES) → check $ TLS = DL+PT $ deflections $\leq \{[span/500 \text{ to span}/350].C_1, 20mm\}$. → check SLS=DL+SDL+LL+PT deflections $\leq [span/250].C_1$.	
	→ check $k_{c.}(DL+SDL)+LL+k_{C,PT}$. PT deflections $\leq \{[span/500 \text{ to } span/350].C_1, 20mm\}$, note the creep term also includes the <u>total</u> (elastic, creep, shrinkage) axial shortening of the <u>one</u> storey in question. → check $k_{c.}(DL+SDL)+LL+k_{C,PT}$. PT deflections at façade beams $\leq \{[span/1000].C_1, 20mm\}$, note the creep	

CONTENT	
equating 0.5.(1-0.4) component (as opp component of DL cr likewise creep factor	.6.4 BS8110-1 and cl.3.2.1.1 and cl.3.2.1.2 BS8110-2. Note creep factor, k_c calculated fro DL+1.0SDL= $k_c.(DL+SDL)$ based on multiplying factor 0.5 for the total DL creep deflection posed to the instantaneous deflection component) to (1-0.4) for the remaining 60 eep deflection after 1 month (cl.7.3 BS8110-2), giving $k_c=[0.3DL+1.0SDL]/[DL+SDL]$. No , $k_{c,PT}$ calculated as (1-0.5/ K_{LT} . K_{ST}).(1-0.4)=0.2625. of DL+SDL load balancing is approximately 70-100%.
\rightarrow check TLS/SLS b \rightarrow check ULS benc	pending effects $M_{TLS/SLS,E/E}+M_{TLS/SLS,E/L}$ are minimal. ling effects $M_{ULS,E/E}+M_{ULS,S/E}$ based on 1.4 x tributary width x (15.0-25.0kPa) x L ² /12 at
supports.	note w.o./w. the <u>differential</u> (elastic, creep, shrinkage) axial shortening of <u>adjace</u> , +ve bending moment is sagging and $-ve$ bending moment is hogging (<i>consistent</i> w
SAFE). → check TLS/SLS s	hear effects VTLS/SLS,E/E+VTLS/SLS,E/L are minimal.
	ar effects $V_{ULS,E/E}+V_{ULS,S/E}$ based on 1.4 x tributary width x (15.0-25.0kPa) x L/2 a note w.o./w. the differential (elastic, creep, shrinkage) axial shortening of adjace
Note an arbitrary sig → check TLS/SLS a	n convention adopted for shear force (<i>consistent</i> with SAFE). Exercise precompression 0.7-2.5N/mm ² for slab and 2.5-4.5N/mm ² for beam.
BM: -1.0 ≤	$\begin{aligned} \text{ress } f'_{\min,t} \le f'_t \le f'_{\max,t} \\ \text{if } f'_t \le 0.50 \text{fci} [\text{CL2}] \mid -0.25 \text{fci} \le f'_t \le 0.50 \text{fci} [\text{CL2}] \mid \\ -0.25 \text{fci} \le f'_t \le 0.50 \text{fci} [\text{CL3}] \mid \\ \text{if } f'_t \le 0.24 \text{fci} \le 0.24 \text{fci} \le f'_t \le 0.24 \text{fci} \le 0.24$
•	$f_{t} \leq 0.24 f_{ci} \text{ [CL1] } -0.36 \sqrt{f_{ci}} \leq f_{t} \leq 0.24 f_{ci} \text{ [CL2] } -0.45 \sqrt{f_{ci}} \leq f_{t} \leq 0.24 f_{ci} \text{ [CL3] } $ m stress $f_{min,b} \leq f_{b} \leq f_{max,b}$
	$f_{b} \leq 0.50 f_{ci} [CL1] -0.36 \sqrt{f_{ci}} \leq f_{b}' \leq 0.50 f_{ci} [CL2] -0.25 f_{ci} \leq f_{b}' \leq 0.50 f_{ci} [CL3] $
-	$f_{b} \le 0.33 f_{ci} [CL1] -0.36 \sqrt{f_{ci}} \le f_{b}' \le 0.33 f_{ci} [CL2] -0.45 \sqrt{f_{ci}} \le f_{b}' \le 0.33 f_{ci} [CL3] $
•	Tress $f_{min,t} \le f_t \le f_{max,t}$
BM: -0.0 ≤	$f_t \le 0.33 f_{cu} \text{ [CL1]} -0.36 \sqrt{f_{cu}} \le f_t \le 0.33 f_{cu} \text{ [CL2]} -<> \le f_t \le 0.33 f_{cu} \text{ [CL3]} $
FS: -0.0 ≤	$f_{t} \le 0.33 f_{cu} [CL1] -0.36 \sqrt{f_{cu}} \le f_{t} \le 0.33 f_{cu} [CL2] -0.45 \sqrt{f_{cu}} \le f_{t} \le 0.33 f_{cu} [CL3] $
	> = MAX {-0.25f _{cu} , (0.7-1.1).(-0.58 $\sqrt{f_{cu}}$ to -0.82 $\sqrt{f_{cu}}$)-4N/mm ² /1.0%}.
→ check SLS botto	m stress $f_{min,b} \le f_b \le f_{max,b}$
→ check SLS botto BM: -0.0 ≤	
→ check SLS botto BM: -0.0 ≤ FS: -0.0 ≤	$ \begin{array}{l} \textbf{m stress } f_{min,b} \leq f_b \leq f_{max,b} \\ \leq f_b \leq 0.40 f_{cu} \ [CL1] \ \ -0.36 \sqrt{f_{cu}} \leq f_b \leq 0.40 f_{cu} \ [CL2] \ \ -< \dots > \leq f_b \leq 0.40 f_{cu} \ [CL3] \ \\ \leq f_b \leq 0.24 f_{cu} \ [CL1] \ \ -0.36 \sqrt{f_{cu}} \leq f_b \leq 0.24 f_{cu} \ [CL2] \ \ -0.45 \sqrt{f_{cu}} \leq f_b \leq 0.24 f_{cu} \ [CL3] \ \\ \end{array} $
→ check SLS botton BM: -0.0 ≤ FS: -0.0 ≤ Note -< Note by convention,	$ \begin{array}{l} \textbf{m stress } f_{\text{min},b} \leq f_{b} \leq f_{\text{max},b} \\ \hline f_{b} \leq 0.40 f_{\text{cu}} \ [\text{CL1}] \ \ -0.36 \sqrt{f_{\text{cu}}} \leq f_{b} \leq 0.40 f_{\text{cu}} \ [\text{CL2}] \ \ -< \ldots > \leq f_{b} \leq 0.40 f_{\text{cu}} \ [\text{CL3}] \ \\ \hline f_{b} \leq 0.24 f_{\text{cu}} \ [\text{CL1}] \ \ -0.36 \sqrt{f_{\text{cu}}} \leq f_{b} \leq 0.24 f_{\text{cu}} \ [\text{CL2}] \ \ -0.45 \sqrt{f_{\text{cu}}} \leq f_{b} \leq 0.24 f_{\text{cu}} \ [\text{CL3}] \ \\ \ \ldots > = \text{MAX } \{ -0.25 f_{\text{cu}}, \ (0.7 - 1.1). (-0.58 \sqrt{f_{\text{cu}}} \ to \ -0.82 \sqrt{f_{\text{cu}}}) - 4N/mm^{2}/1.0\% \}. \\ + \text{ve stress is compressive and } - \text{ve stress is tensile} \ (inconsistent \ with \ \text{SAFE}). \end{array} $
→ check SLS botton BM: -0.0 ≤ FS: -0.0 ≤ Note -< Note by convention, → check rebar area	$ \begin{array}{l} \mbox{stress } f_{min,b} \leq f_b \leq f_{max,b} \\ \mbox{stress } f_b \leq 0.40 f_{cu} \ [CL1] \ \ -0.36 \sqrt{f_{cu}} \leq f_b \leq 0.40 f_{cu} \ [CL2] \ \ -< \dots > \leq f_b \leq 0.40 f_{cu} \ [CL3] \ \\ \mbox{stress } f_b \leq 0.24 f_{cu} \ [CL1] \ \ -0.36 \sqrt{f_{cu}} \leq f_b \leq 0.24 f_{cu} \ [CL2] \ \ -0.45 \sqrt{f_{cu}} \leq f_b \leq 0.24 f_{cu} \ [CL3] \ \\ \mbox{> = MAX } \{ -0.25 f_{cu}, \ (0.7-1.1).(-0.58 \sqrt{f_{cu}} \ to \ -0.82 \sqrt{f_{cu}}) -4N/mm^2/1.0\% \}. \\ \mbox{+ve stress is compressive and -ve stress is tensile } (inconsistent \ with \ SAFE). \\ \mbox{as (to resist SLS tensile stress) required } \{ As(d)1, \ As(d)2 \}, \ noting \ minimum \ steel. \end{array} $
 → check SLS botton BM: -0.0 ≤ FS: -0.0 ≤ Note -< Note by convention, → check rebar area → check ULS mome 	$ \begin{array}{l} \mbox{stress } f_{min,b} \leq f_{b} \leq f_{max,b} \\ \mbox{st} f_{b} \leq 0.40 f_{cu} [CL1] -0.36 \sqrt{f_{cu}} \leq f_{b} \leq 0.40 f_{cu} [CL2] -<> \leq f_{b} \leq 0.40 f_{cu} [CL3] \\ \mbox{st} f_{b} \leq 0.24 f_{cu} [CL1] -0.36 \sqrt{f_{cu}} \leq f_{b} \leq 0.24 f_{cu} [CL2] -0.45 \sqrt{f_{cu}} \leq f_{b} \leq 0.24 f_{cu} [CL3] \\ \mbox{>} = MAX \{ -0.25 f_{cu}, (0.7-1.1). (-0.58 \sqrt{f_{cu}} to -0.82 \sqrt{f_{cu}}) - 4N/mm^{2}/1.0\% \}. \\ \mbox{+ve stress is compressive and -ve stress is tensile (inconsistent with SAFE). \\ \mbox{as (to resist SLS tensile stress) required } \{As(d)1, As(d)2\}, noting minimum steel. \\ \mbox{ent capacity}, M_{u} is greater than ULS bending effects M_{ULS,E/E} + M_{ULS,S/E}. \end{array} $
 → check SLS botton BM: -0.0 ≤ FS: -0.0 ≤ Note -< Note by convention, → check rebar area → check ULS mome → check ULS shear 	m stress $f_{min,b} \le f_b \le f_{max,b}$ is $f_b \le 0.40f_{cu}$ [CL1] $-0.36\sqrt{f_{cu}} \le f_b \le 0.40f_{cu}$ [CL2] $-<> \le f_b \le 0.40f_{cu}$ [CL3] is $f_b \le 0.24f_{cu}$ [CL1] $-0.36\sqrt{f_{cu}} \le f_b \le 0.24f_{cu}$ [CL2] $-0.45\sqrt{f_{cu}} \le f_b \le 0.24f_{cu}$ [CL3] > = MAX { $-0.25f_{cu}$, (0.7-1.1).($-0.58\sqrt{f_{cu}}$ to $-0.82\sqrt{f_{cu}}$) $-4N/mm^2/1.0\%$ }. +ve stress is compressive and $-ve$ stress is tensile (<i>inconsistent</i> with SAFE). as (to resist SLS tensile stress) required {As(d)1, As(d)2}, noting minimum steel. ent capacity , M _u is greater than ULS bending effects M _{ULS,E/E} +M _{ULS,S/E} . r capacity , V _u is greater than ULS shear effects V _{ULS,E/E} +V _{ULS,S/E} together with the associat
 → check SLS botton BM: -0.0 ≤ FS: -0.0 ≤ Note -< Note by convention, → check rebar area → check ULS mome → check ULS shear required shear lini 	m stress $f_{min,b} \le f_b \le f_{max,b}$ is $f_b \le 0.40f_{cu}$ [CL1] $-0.36\sqrt{f_{cu}} \le f_b \le 0.40f_{cu}$ [CL2] $-<> \le f_b \le 0.40f_{cu}$ [CL3] is $f_b \le 0.24f_{cu}$ [CL1] $-0.36\sqrt{f_{cu}} \le f_b \le 0.24f_{cu}$ [CL2] $-0.45\sqrt{f_{cu}} \le f_b \le 0.24f_{cu}$ [CL3] > = MAX { $-0.25f_{cu}$, (0.7-1.1).($-0.58\sqrt{f_{cu}}$ to $-0.82\sqrt{f_{cu}}$) $-4N/mm^2/1.0\%$ }. +ve stress is compressive and $-ve$ stress is tensile (<i>inconsistent</i> with SAFE). as (to resist SLS tensile stress) required {As(d)1, As(d)2}, noting minimum steel. ent capacity , M _u is greater than ULS bending effects M _{ULS,E/E} +M _{ULS,S/E} . r capacity , V _u is greater than ULS shear effects V _{ULS,E/E} +V _{ULS,S/E} together with the associat
 → check SLS botton BM: -0.0 ≤ FS: -0.0 ≤ Note -< Note by convention, → check rebar area → check ULS mome → check ULS shear → check ULS shear lini SAFE → check rebar RC or PT Method comparison 	m stress $f_{min,b} \le f_b \le f_{max,b}$ $f_b \le 0.40f_{cu} [CL1] -0.36\sqrt{f_{cu}} \le f_b \le 0.40f_{cu} [CL2] -<> \le f_b \le 0.40f_{cu} [CL3] $ $f_b \le 0.24f_{cu} [CL1] -0.36\sqrt{f_{cu}} \le f_b \le 0.24f_{cu} [CL2] -0.45\sqrt{f_{cu}} \le f_b \le 0.24f_{cu} [CL3] $ $> = MAX \{-0.25f_{cu}, (0.7-1.1).(-0.58\sqrt{f_{cu}} to -0.82\sqrt{f_{cu}})-4N/mm^2/1.0\%\}.$ +ve stress is compressive and -ve stress is tensile (<i>inconsistent</i> with SAFE). as (to resist SLS tensile stress) required {As(d)1, As(d)2}, noting minimum steel. ent capacity , M _u is greater than ULS bending effects M _{ULS,E/E} +M _{ULS,S/E} . r capacity , V _u is greater than ULS shear effects V _{ULS,E/E} +V _{ULS,S/E} together with the associat ks A _{sv,req} /S. r (to resist SLS tensile stress) required in X/Y directions (ES).
 → check SLS botton BM: -0.0 ≤ FS: -0.0 ≤ Note -< Note by convention, → check rebar area → check ULS mome → check ULS shear required shear lini SAFE → check rebar 	stress $f_{min,b} \le f_b \le f_{max,b}$ $f_b \le 0.40f_{cu} [CL1] -0.36\sqrt{f_{cu}} \le f_b \le 0.40f_{cu} [CL2] -<> \le f_b \le 0.40f_{cu} [CL3] $ $f_b \le 0.24f_{cu} [CL1] -0.36\sqrt{f_{cu}} \le f_b \le 0.24f_{cu} [CL2] -0.45\sqrt{f_{cu}} \le f_b \le 0.24f_{cu} [CL3] $ $> = MAX \{-0.25f_{cu}, (0.7-1.1).(-0.58\sqrt{f_{cu}} to -0.82\sqrt{f_{cu}})-4N/mm^2/1.0\%\}.$ +ve stress is compressive and -ve stress is tensile (<i>inconsistent</i> with SAFE). as (to resist SLS tensile stress) required {As(d)1, As(d)2}, noting minimum steel. ent capacity , M _u is greater than ULS bending effects MuLS,E/E+MULS,S/E. r capacity , V _u is greater than ULS shear effects VULS,E/E+VULS,S/E together with the associate ks A _{sv,req} /S. r (to resist SLS tensile stress) required in X/Y directions (ES). bf Slab Detailing
 → check SLS botton BM: -0.0 ≤ FS: -0.0 ≤ Note -< Note by convention, → check rebar area → check ULS mome → check ULS shear required shear lini SAFE → check rebar RC or PT Method content Rc or PT Method content Automatic Specification of Reinforcement 	m stress $f_{min,b} \le f_b \le f_{max,b}$ is $f_b \le 0.40f_{cu} [CL1] -0.36\sqrt{f_{cu}} \le f_b \le 0.40f_{cu} [CL2] -<> \le f_b \le 0.40f_{cu} [CL3] $ is $f_b \le 0.24f_{cu} [CL1] -0.36\sqrt{f_{cu}} \le f_b \le 0.24f_{cu} [CL2] -0.45\sqrt{f_{cu}} \le f_b \le 0.24f_{cu} [CL3] $ > = MAX {-0.25f_{cu}, (0.7-1.1).(-0.58\f_{cu} to -0.82\f_{cu})-4N/mm^2/1.0\%}. +ve stress is compressive and -ve stress is tensile (<i>inconsistent</i> with SAFE). as (to resist SLS tensile stress) required {As(d)1, As(d)2}, noting minimum steel. ent capacity, M _u is greater than ULS bending effects M _{ULS,E/E} +M _{ULS,S/E} . r capacity, V _u is greater than ULS shear effects V _{ULS,E/E} +V _{ULS,S/E} together with the associat ks A _{sv,req} /S. r (to resist SLS tensile stress) required in X/Y directions (ES). of Slab Detailing of Slab Detailing Automatic specification of (top and bottom) reinforcement bars based on slab rebar settings with min steel bar size T10 (i.e. smallest available rebar diameter), bar spacing 100mm min to 250mm max and steel bar spacing step 25mm. Note in this method, only the 1/3 rd span hogging regions will be automatically reinforced, manual
 → check SLS botton BM: -0.0 ≤ FS: -0.0 ≤ Note -< Note by convention, → check rebar area → check ULS mome → check ULS shear required shear lini SAFE → check rebar RC or PT Method content Rc or PT Method 1: Automatic Specification of 	m stress $f_{min,b} \le f_b \le f_{max,b}$ is $f_b \le 0.40f_{cu} [CL1] -0.36\sqrt{f_{cu}} \le f_b \le 0.40f_{cu} [CL2] -<> \le f_b \le 0.40f_{cu} [CL3] $ is $f_b \le 0.24f_{cu} [CL1] -0.36\sqrt{f_{cu}} \le f_b \le 0.24f_{cu} [CL2] -0.45\sqrt{f_{cu}} \le f_b \le 0.24f_{cu} [CL3] $ > = MAX {-0.25f_{cu}, (0.7-1.1).(-0.58 $\sqrt{f_{cu}}$ to -0.82 $\sqrt{f_{cu}}$)-4N/mm ² /1.0%}. +ve stress is compressive and -ve stress is tensile (<i>inconsistent</i> with SAFE). as (to resist SLS tensile stress) required {As(d)1, As(d)2}, noting minimum steel. ent capacity, M _u is greater than ULS bending effects M _{ULS,E/E} +M _{ULS,S/E} . r capacity, V _u is greater than ULS shear effects V _{ULS,E/E} +V _{ULS,S/E} together with the associate ks A _{sv,req} /S. r (to resist SLS tensile stress) required in X/Y directions (ES). of Slab Detailing of Slab Detailing Automatic specification of (top and bottom) reinforcement bars based on slab rebar settings with min steel bar size T10 (i.e. smallest available rebar diameter), bar spacing 100mm min to 250mm max and steel bar spacing step 25mm. Note in this method, only the 1/3 rd span hogging regions will be automatically reinforced, manual addition required for top steel throughout. Automatic specification of (top) reinforcement mesh / bars based on slab rebar
 → check SLS botton BM: -0.0 ≤ FS: -0.0 ≤ Note -< Note by convention, → check rebar area → check ULS mome → check ULS shear required shear lini SAFE → check rebar RC or PT Method content Rethod 1: Automatic Specification of Reinforcement Bars Method 2: 	m stress $f_{min,b} \le f_b \le f_{max,b}$ is $f_b \le 0.40f_{cu}$ [CL1] -0.36 $\sqrt{f_{cu}} \le f_b \le 0.40f_{cu}$ [CL2] -<> $\le f_b \le 0.40f_{cu}$ [CL3] is $f_b \le 0.24f_{cu}$ [CL1] -0.36 $\sqrt{f_{cu}} \le f_b \le 0.24f_{cu}$ [CL2] -0.45 $\sqrt{f_{cu}} \le f_b \le 0.24f_{cu}$ [CL3] > = MAX {-0.25f_{cu}, (0.7-1.1).(-0.58 $\sqrt{f_{cu}} to -0.82\sqrt{f_{cu}})-4N/mm^2/1.0\%$ }. +ve stress is compressive and -ve stress is tensile (<i>inconsistent</i> with SAFE). as (to resist SLS tensile stress) required {As(d)1, As(d)2}, noting minimum steel. ent capacity, Mu is greater than ULS bending effects MULS,E/E+MULS,S/E. r capacity, Vu is greater than ULS shear effects VULS,E/E+VULS,S/E together with the associat ks Asv,req/S. r (to resist SLS tensile stress) required in X/Y directions (ES). of Slab Detailing of Slab Detailing Automatic specification of (top and bottom) reinforcement bars based on slab rebar settings with min steel bar size T10 (i.e. smallest available rebar diameter), bar spacing 100mm min to 250mm max and steel bar spacing step 25mm. Note in this method, only the 1/3 rd span hogging regions will be automatically reinforced, manual addition required for top steel throughout. Automatic specification of (top) reinforcement mesh / bars based on slab rebar settings with min steel bar size T6, bar spacing 100mm min to 200mm max, steel bar
 → check SLS bottor BM: -0.0 ≤ FS: -0.0 ≤ Note -< Note by convention, → check rebar area → check ULS mome → check ULS shear required shear linit SAFE → check rebat RC or PT Method content Reinforcement Bars Method 2: Semi-Automatic 	m stress $f_{min,b} \le f_b \le f_{max,b}$ is $f_b \le 0.40f_{cu} [CL1] -0.36 \sqrt{f_{cu}} \le f_b \le 0.40f_{cu} [CL2] -<> \le f_b \le 0.40f_{cu} [CL3] $ is $f_b \le 0.24f_{cu} [CL1] -0.36 \sqrt{f_{cu}} \le f_b \le 0.24f_{cu} [CL2] -0.45 \sqrt{f_{cu}} \le f_b \le 0.24f_{cu} [CL3] $ > = MAX {-0.25f_{cu}, (0.7-1.1).(-0.58 $\sqrt{f_{cu}} to -0.82 \sqrt{f_{cu}})-4N/mm^2/1.0\%$ }. +ve stress is compressive and -ve stress is tensile (<i>inconsistent</i> with SAFE). as (to resist SLS tensile stress) required {As(d)1, As(d)2}, noting minimum steel. ent capacity, Mu is greater than ULS bending effects MULS,E/E+MULS,S/E. r capacity, Vu is greater than ULS shear effects VULS,E/E+VULS,S/E together with the associat ks Asv,req/S. r (to resist SLS tensile stress) required in X/Y directions (ES). of Slab Detailing of Slab Detailing of Slab Detailing Mutomatic specification of (top and bottom) reinforcement bars based on slab rebar settings with min steel bar size T10 (i.e. smallest available rebar diameter), bar spacing 100mm min to 250mm max and steel bar spacing step 25mm. Note in this method, only the 1/3 rd span hogging regions will be automatically reinforced, manual addition required for top steel throughout. Automatic specification of (top) reinforcement mesh / bars based on slab rebar settings with min steel bar size T6, bar spacing 100mm min to 200mm max, steel bar spacing step 100mm and subsequent manual equivalent mesh substitution (where
 → check SLS bottor BM: -0.0 ≤ FS: -0.0 ≤ Note -< Note by convention, → check rebar area → check ULS mome → check ULS shear required shear linit SAFE → check rebar RC or PT Method content Recipication of Reinforcement Bars Method 2: Semi-Automatic Specification of Specification of 	m stress $f_{min,b} \le f_b \le f_{max,b}$ is $f_b \le 0.40f_{cu}$ [CL1] $-0.36\sqrt{f_{cu}} \le f_b \le 0.40f_{cu}$ [CL2] $-<> \le f_b \le 0.40f_{cu}$ [CL3] is $f_b \le 0.24f_{cu}$ [CL1] $-0.36\sqrt{f_{cu}} \le f_b \le 0.24f_{cu}$ [CL2] $-0.45\sqrt{f_{cu}} \le f_b \le 0.24f_{cu}$ [CL3] > = MAX { $-0.25f_{cu}$, (0.7-1.1).($-0.58\sqrt{f_{cu}}$ to $-0.82\sqrt{f_{cu}}$)-4N/mm ² /1.0%}. +ve stress is compressive and -ve stress is tensile (<i>inconsistent</i> with SAFE). as (to resist SLS tensile stress) required {As(d)1, As(d)2}, noting minimum steel. ent capacity, M _u is greater than ULS bending effects M _{ULS,E/E} +M _{ULS,S/E} . r capacity, V _u is greater than ULS shear effects V _{ULS,E/E} +V _{ULS,S/E} together with the associat ks A _{Sv,req} /S. r (to resist SLS tensile stress) required in X/Y directions (ES). of Slab Detailing of Slab Detailing of Slab Detailing Mutomatic specification of (top and bottom) reinforcement bars based on slab rebar settings with min steel bar size T10 (i.e. smallest available rebar diameter), bar spacing 100mm min to 250mm max and steel bar spacing step 25mm. Note in this method, only the 1/3 rd span hogging regions will be automatically reinforced, manual addition required for top steel throughout. Automatic specification of (top) reinforcement mesh / bars based on slab rebar settings with min steel bar size T6, bar spacing 100mm min to 200mm max, steel bar spacing step 100mm and subsequent manual equivalent mesh substitution (where possible). Note in this method, only the 1/3 rd span hogging regions will be
 → check SLS bottor BM: -0.0 ≤ FS: -0.0 ≤ Note -< Note by convention, → check rebar area → check ULS mome → check ULS shear required shear linit SAFE → check rebat RC or PT Method content Reinforcement Bars Method 2: Semi-Automatic 	m stress $f_{min,b} \le f_b \le f_{max,b}$ is $f_b \le 0.40f_{cu} [CL1] -0.36 \sqrt{f_{cu}} \le f_b \le 0.40f_{cu} [CL2] -<> \le f_b \le 0.40f_{cu} [CL3] $ is $f_b \le 0.24f_{cu} [CL1] -0.36 \sqrt{f_{cu}} \le f_b \le 0.24f_{cu} [CL2] -0.45 \sqrt{f_{cu}} \le f_b \le 0.24f_{cu} [CL3] $ > = MAX {-0.25f_{cu}, (0.7-1.1).(-0.58 $\sqrt{f_{cu}} to -0.82 \sqrt{f_{cu}})-4N/mm^2/1.0\%}.$ +ve stress is compressive and -ve stress is tensile (<i>inconsistent</i> with SAFE). as (to resist SLS tensile stress) required {As(d)1, As(d)2}, noting minimum steel. ent capacity, Mu is greater than ULS bending effects MULS,E/E+MULS,S/E. r capacity, Vu is greater than ULS shear effects VULS,E/E+VULS,S/E together with the associat ks Asv,req/S. r (to resist SLS tensile stress) required in X/Y directions (ES). of Slab Detailing of Slab Detailing of Slab Detailing Mutomatic specification of (top and bottom) reinforcement bars based on slab rebar settings with min steel bar size T10 (i.e. smallest available rebar diameter), bar spacing 100mm min to 250mm max and steel bar spacing step 25mm. Note in this method, only the 1/3 rd span hogging regions will be automatically reinforced, manual addition required for top steel throughout. Automatic specification of (top) reinforcement mesh / bars based on slab rebar settings with min steel bar size T6, bar spacing 100mm min to 200mm max, steel bar spacing step 100mm and subsequent manual equivalent mesh substitution (where
 → check SLS botto BM: -0.0 ≤ FS: -0.0 ≤ Note -< Note by convention, → check rebar area → check rebar area → check ULS mome → check ULS mome → check ULS shear required shear linit SAFE → check rebar RC or PT Method contents RC or PT Method contents Automatic Specification of Reinforcement Bars Method 2: Semi-Automatic Specification of Reinforcement 	m stress $f_{min,b} \le f_b \le f_{max,b}$ is $f_b \le 0.40f_{cu}$ [CL1] $-0.36\sqrt{f_{cu}} \le f_b \le 0.40f_{cu}$ [CL2] $-<> \le f_b \le 0.40f_{cu}$ [CL3] is $f_b \le 0.24f_{cu}$ [CL1] $-0.36\sqrt{f_{cu}} \le f_b \le 0.24f_{cu}$ [CL2] $-0.45\sqrt{f_{cu}} \le f_b \le 0.24f_{cu}$ [CL3] > = MAX {-0.25f_{cu}, (0.7-1.1).(-0.58 $\sqrt{f_{cu}} to -0.82\sqrt{f_{cu}})-4N/mm^2/1.0\%$ }. +ve stress is compressive and -ve stress is tensile (<i>inconsistent</i> with SAFE). as (to resist SLS tensile stress) required {As(d)1, As(d)2}, noting minimum steel. ent capacity , Mu is greater than ULS bending effects MuLS,E/E + MULS,S/E. r capacity , Vu is greater than ULS shear effects VULS,E/E + VULS,S/E together with the associat ks Asv,req/S. r (to resist SLS tensile stress) required in X/Y directions (ES). of Slab Detailing of Slab Detailing of Slab Detailing of Slab Detailing of Slab Detailing of Slab Detailing utomatic specification of (top and bottom) reinforcement bars based on slab rebar settings with min steel bar size T10 (i.e. smallest available rebar diameter), bar spacing 100mm min to 250mm max and steel bar spacing step 25mm. Note in this method, only the 1/3 rd span hogging regions will be automatically reinforced, manual addition required for top steel throughout. Automatic specification of (top) reinforcement mesh / bars based on slab rebar settings with min steel bar size T6, bar spacing 100mm min to 200mm max, steel bar spacing step 100mm and subsequent manual equivalent mesh substitution (where possible). Note in this method, only the 1/3 rd span hogging regions will be automatically reinforced, manual addition required for top steel throughout. Automatic specification of (top) reinforcement mesh / bars based on slab rebar settings with min steel bar size T6, bar spacing 100mm min to 200mm max, steel bar spacing step 100mm and subsequent manual equivalent mesh substitution (where possible). Note in this method, only the 1/3 rd span hogging regions will be automatica
 → check SLS botto BM: -0.0 ≤ FS: -0.0 ≤ Note -< Note by convention, → check rebar area → check rebar area → check ULS mome → check ULS mome → check ULS shear required shear linit SAFE → check rebar RC or PT Method contents RC or PT Method contents Automatic Specification of Reinforcement Bars Method 2: Semi-Automatic Specification of Reinforcement 	m stress $f_{min,b} \le f_b \le f_{max,b}$ is $f_b \le 0.40f_{cu}$ [CL1] -0.36 $\sqrt{f_{cu}} \le f_b \le 0.40f_{cu}$ [CL2] -<> $\le f_b \le 0.40f_{cu}$ [CL3] is $f_b \le 0.24f_{cu}$ [CL1] -0.36 $\sqrt{f_{cu}} \le f_b \le 0.24f_{cu}$ [CL2] -0.45 $\sqrt{f_{cu}} \le f_b \le 0.24f_{cu}$ [CL3] > = MAX {-0.25f_{cu}, (0.7-1.1).(-0.58 $\sqrt{f_{cu}}$ to -0.82 $\sqrt{f_{cu}}$)-4N/mm ² /1.0%}. +ve stress is compressive and -ve stress is tensile (<i>inconsistent</i> with SAFE). as (to resist SLS tensile stress) required {As(d)1, As(d)2}, noting minimum steel. ent capacity , M_u is greater than ULS bending effects $M_{ULS,F/E}+M_{ULS,S/E}$. r capacity , V_u is greater than ULS shear effects $V_{ULS,F/E}+M_{ULS,S/E}$ together with the associat ks Asv,rea/S. r (to resist SLS tensile stress) required in X/Y directions (ES). of Slab Detailing of slab Detailin
 → check SLS botto BM: -0.0 ≤ FS: -0.0 ≤ Note -< Note by convention, → check rebar area → check ULS mome → check rebar required shear lini SAFE → check rebar RC or PT Method C RC or PT Method C RC or PT Method Method 1: Automatic Specification of Reinforcement Bars Method 2: Semi-Automatic Specification of Reinforcement Mesh / Bars Method 3: Manual 	m stress $f_{min,b} \le f_b \le f_{max,b}$ is $f_b \le 0.40f_{cu}$ [CL1] -0.36 $\sqrt{f_{cu}} \le f_b \le 0.40f_{cu}$ [CL2] -<> $\le f_b \le 0.40f_{cu}$ [CL3] is $f_b \le 0.24f_{cu}$ [CL1] -0.36 $\sqrt{f_{cu}} \le f_b \le 0.24f_{cu}$ [CL2] -0.45 $\sqrt{f_{cu}} \le f_b \le 0.24f_{cu}$ [CL3] > = MAX {-0.25f_{cu}, (0.7-1.1).(-0.58 $\sqrt{f_{cu}}$ to -0.82 $\sqrt{f_{cu}}$)-4N/mm ² /1.0%}. +ve stress is compressive and -ve stress is tensile (<i>inconsistent</i> with SAFE). as (to resist SLS tensile stress) required {As(d)1, As(d)2}, noting minimum steel. ent capacity, M_u is greater than ULS bending effects $M_{ULS,E/E}+M_{ULS,S/E}$. r capacity, V_u is greater than ULS shear effects $V_{ULS,E/E}+M_{ULS,S/E}$ together with the associat ks Asv,rea/S. r (to resist SLS tensile stress) required in X/Y directions (ES). of Slab Detailing of Slab Detailing of Slab Detailing of Slab Detailing Automatic specification of (top and bottom) reinforcement bars based on slab rebar settings with min steel bar size T10 (i.e. smallest available rebar diameter), bar spacing 100mm min to 250mm max and steel bar spacing step 25mm. Note in this method, only the 1/3 rd span hogging regions will be automatically reinforced, manual addition required for top steel throughout. Automatic specification of (top) reinforcement mesh / bars based on slab rebar settings with min steel bar size T6, bar spacing 100mm min to 200mm max, steel bar spacing step 100mm and subsequent manual equivalent mesh substitution (where possible). Note in this method, only the 1/3 rd span hogging regions will be automatically reinforced, manual addition required for top steel throughout. Manual specification of (top) reinforcement mesh / bars based on SAFE rebar areas required {As(d)1, As(d)2} for slab panels. Note in this method, since it is a
 → check SLS botto BM: -0.0 ≤ FS: -0.0 ≤ Note -< Note by convention, → check rebar area → check rebar area → check rebar area → check ULS mome → check ULS mome → check rebar required shear linit SAFE → check rebar RC or PT Method co RC or PT Method co RC or PT Method co Rethod 1: Automatic Specification of Reinforcement Bars Method 3: Manual Specification of 	m stress $f_{min,b} \le f_b \le f_{max,b}$ is $f_b \le 0.40f_{cu}$ [CL1] -0.36 $\sqrt{f_{cu}} \le f_b \le 0.40f_{cu}$ [CL2] -<> $\le f_b \le 0.40f_{cu}$ [CL3] is $f_b \le 0.24f_{cu}$ [CL1] -0.36 $\sqrt{f_{cu}} \le f_b \le 0.24f_{cu}$ [CL2] -0.45 $\sqrt{f_{cu}} \le f_b \le 0.24f_{cu}$ [CL3] > = MAX {-0.25f_{cu}, (0.7-1.1).(-0.58 $\sqrt{f_{cu}}$ to -0.82 $\sqrt{f_{cu}}$)-4N/mm ² /1.0%}. +ve stress is compressive and -ve stress is tensile (<i>inconsistent</i> with SAFE). as (to resist SLS tensile stress) required {As(d)1, As(d)2}, noting minimum steel. ent capacity , M_u is greater than ULS bending effects $M_{ULS,F/E}+M_{ULS,S/E}$. r capacity , V_u is greater than ULS shear effects $V_{ULS,F/E}+M_{ULS,S/E}$ together with the associat ks Asv,rea/S. r (to resist SLS tensile stress) required in X/Y directions (ES). of Slab Detailing of slab Detailin
 → check SLS botto BM: -0.0 ≤ FS: -0.0 ≤ Note -< Note by convention, → check rebar area → check ULS mome → check rebar required shear lini SAFE → check rebar RC or PT Method C RC or PT Method C RC or PT Method Method 1: Automatic Specification of Reinforcement Bars Method 2: Semi-Automatic Specification of Reinforcement Mesh / Bars Method 3: Manual 	m stress $f_{min,b} \le f_b \le f_{max,b}$ is $f_b \le 0.40f_{cu} [CL1] -0.36\sqrt{f_{cu}} \le f_b \le 0.40f_{cu} [CL2] -<> \le f_b \le 0.40f_{cu} [CL3] $ is $f_b \le 0.24f_{cu} [CL1] -0.36\sqrt{f_{cu}} \le f_b \le 0.24f_{cu} [CL2] -0.45\sqrt{f_{cu}} \le f_b \le 0.24f_{cu} [CL3] $ > = MAX {-0.25f_{cu}, (0.7-1.1).(-0.58\/f_{cu} to -0.82\/f_{cu})-4N/mm^2/1.0%}. +ve stress is compressive and -ve stress is tensile (<i>inconsistent</i> with SAFE). as (to resist SLS tensile stress) required {As(d)1, As(d)2}, noting minimum steel. ent capacity, Mu is greater than ULS bending effects MULS,E/E+MULS,S/E. r capacity, Vu is greater than ULS shear effects VULS,E/E+VULS,S/E together with the associat ks Asv,red/S. r (to resist SLS tensile stress) required in X/Y directions (ES). of Slab Detailing of Slab Detailing of Slab Detailing of Slab Detailing addition required for top steel throughout. Automatic specification of (top and bottom) reinforcement bars based on slab rebar settings with min steel bar size T10 (i.e. smallest available rebar diameter), bar spacing 100mm min to 250mm max and steel bar spacing step 25mm. Note in this method, only the 1/3 rd span hogging regions will be automatically reinforced, manual addition required for top steel throughout. Automatic specification of (top) reinforcement mesh / bars based on slab rebar spacing step 100mm and subsequent manual equivalent mesh substitution (where possible). Note in this method, only the 1/3 rd span hogging regions will be automatically reinforced, manual addition required for top steel throughout. Manual specification of (top) reinforcement mesh / bars based on SAFE rebar areas required {As(d)1, As(d)2} for slab panels. Note in this method, since it is a manual method, either only the 1/3 rd span hogging regions may be reinforced or manual method, either only the 1/3 rd span hogging regions may be reinforced or manual method, either only the 1/3 rd span hogging regions may be reinforced or manual method, either only the 1/3 rd span hogging regions

TTEM	CONTENT	
ITEM	CONTENT	٦
	Check design strip design sections moment capacities (ES). Check design strip design sections dimensions (ES).	
	Check design strip design sections dimensions (ES).	
	Check tendon and rebar plans (ES).	
7.36	Manually check ULS shear stresses and shear design at beam/wall supports of heavily loaded slabs (ES).	
7.37	SAFE → check ULS punching shear at wall/column supports of flat slabs together with the associated	
	required shear links A _{sv,req} (ES).	
8.0	BEAM AND WALL/COLUMN ANALYSIS AND DESIGN CHECKS	
8.1	Building Analysis Method	
8.11	$BA \rightarrow DISPLAY \rightarrow Deformed Shape \rightarrow Start Animation \rightarrow check skeletal FE model correctly discretises the sectional model by checking animated deflections for modelling accuracy ensuring that all primary beams do frame onto their supporting columns (also displaying the primary beam ULS bending moments for clarity by selecting BA \rightarrow DISPLAY \rightarrow Frame/Pier/Spandrel/Link Forces \rightarrow Moment 3-3) (ES).$	
8.12	BA → DISPLAY → Deformed Shape → check $ TLS = DL + PT $ deflections $\leq \{ [span/500 \text{ to } span/350], C_1, 20mm \}$ (ES). BA → DISPLAY → Deformed Shape → check SLS=DL+SDL+LL+PT deflections $\leq [span/250], C_1$ (ES).	
	BA → DISPLAY → Deformed Shape → check $k_c.(DL+SDL)+LL+PT$ deflections \leq {[span/500 to span/350].C ₁ , 20mm} (ES).	
	BA → DISPLAY → Deformed Shape → check k _c .(DL+SDL)+LL+PT deflections at façade beams $\leq \{[span/1000], C_1, 20mm\}$ (ES). Note C ₁ = {0.8 for flanged beams, 10.0/span(m) for spans > 10.0m, 0.9 for flat slabs}. Note deflection criteria to	
	cl.3.4.6.3 and cl.3.4.6.4 BS8110-1 and cl.3.2.1.1 and cl.3.2.1.2 BS8110-2. Note creep factor, k_c calculated from equating 0.5.(1-0.4)DL+1.0SDL= k_c .(DL+SDL) based on multiplying factor 0.5 for the total DL creep deflection component (as opposed to the instantaneous deflection component) to (1-0.4) for the remaining 60% component of DL creep deflection after 1 month (cl.7.3 BS8110-2), giving k_c =[0.3DL+1.0SDL]/[DL+SDL].	
8.13	$BA \rightarrow DISPLAY \rightarrow Frame/Pier/Spandrel/Link Forces \rightarrow check magnitude and shape of ULS effects (axial forces, shear forces, bending moments, torsional moments) (ES).$	
8.14	$BA \rightarrow DISPLAY \rightarrow Frame/Pier/Spandrel/Link Forces \rightarrow perform the Moment Ratio Check to comprehend the building primary lateral stability elements by both: -(i) comparing the relative magnitude of the coupled shear wall / moment frame / outrigger frame / tube$	
	(shear mode) equivalent global bending moment (back-calculated by multiplying the push-pull axial forces of the walls/columns at the frame extremity with the frame extremity lever arm, noting that the effectiveness of the coupling beams / moment beams / outrigger beams / (framed) tube web spandrel beams in contributing to the base moment resisting lateral stability is measured from the existence of significant push-pull axial forces in the walls/columns at the frame extremity, from the existence of significant push-pull axial forces in the walls/columns (except outrigger columns) and tube flange columns) or from the existence of significant ig-zag bending moments in the coupling beams / moment beams / outrigger beams / (framed) tube web spandrel beams themselves) with the magnitude of the shear wall (bending mode) cumulative bending moment (exhibited as cumulative bending moments in the shear walls or as push-pull axial forces within the flanges of flanged shear wall / moment frame / outrigger frame (except outrigger columns) or from the existence of which shall match the stability base moment) (ES), and (ii) comparing the relative magnitude of the summation of the coupled shear wall / moment frame / outrigger frame (except outrigger columns) and framed) tube web spandrel beams / outrigger beams / (framed) tube web spandrel beams / outrigger beams / (framed) tube web spandrel beams in the walls/columns, noting that the effectiveness of the coupling beams / moment beams / outrigger beams / (framed) tube web spandrel beams in contributing to the base shear resisting lateral stability is measured from the existence of significant shear forces in the walls/columns (except outrigger columns) and tube flange columns) or from the existence of significant shear force from lateral loads only (noting that the stability base shear force from lateral loads only (noting that the stability base shear force from lateral loads only (noting that the stability base shear force from lateral loads only (noting that the s	

ITEM	CONTENT	\checkmark
	Stability Base Stability Base Moment (MNm) Shear (MN)	
8.15	BA/STAGE → DISPLAY → Deformed Shape → and SAFE → check differential beam support SLS settlement (i.e. SLS settlement at the wall/column points) due to DAS of adjacent walls/columns (as a result of non-uniform column sections areas or non-uniform axial loading due to say differing building heights) and/or due to uneven flexibility of transfer beams below \leq span/400 (ES). Note that significant differential beam support (i.e. wall/column point) settlement is also characterised by a significant lateral deflection (sway) of the building due to DL+SDL+LL+PT alone to the side undergoing greater elastic shortening or to the side supported by walls/columns on more flexible transfer beams (thus check for lateral movement of the floor plate on plan due to DL+SDL+LL+PT alone is \leq span/500). The SLS load combination inherently includes the effects of differential (elastic, creep, shrinkage) axial shortening. Staged construction analysis may be performed to reduce the magnitude of the effects of differential (elastic, creep, shrinkage) axial shortening. Finally, significant differential beam support (i.e. wall/column point) settlement is also characterised by large discrepancies in the load take down, transfer beam bending moments and the higher levels beam bending moments predicted between the BA and STAGE methods of frame analysis. The ULS load combinations inherently include the effects of differential (elastic, creep, shrinkage) axial shortening. Staged construction analysis may be performed to reduce the magnitude of the effects of differential (elastic, creep, shrinkage) axial shortening. Staged construction analysis may be performed to reduce the magnitude of the effects of differential (elastic, creep, shrinkage) axial shortening. Since it is difficult to reduce elastic shortening significantly, a better strategy is to limit the DAS by designing all walls/columns to the same axial stress level, maintain long clear spans between different structural types, i.e. between lightly- loaded cores and shear wal	
8.16	Manually check that the bending moment design, ultimate shear force (ultimate shear stress) check and shear force design of beams with incoming offset beams (i.e. secondary beams that frame into the beam in question within the footprint of the wall/column) with a physical width that protrudes beyond the wall/column footprint is sufficiently enhanced (ES).	
8.17	Manually check beams (especially heavily loaded beams / transfer beams) with widths larger than the supporting wall/column width for ultimate shear and design shear within a beam width equal to the supporting wall/column width, notwithstanding the reverse analogy to multi column footing foundation shear design where the full width of the footing beam contributes to the ultimate and design shear capacity. These beams need also be manually checked for ULS punching shear (ES).	
8.18	Manually check ULS shear stresses and shear design at transferred walls on transfer beams.	
8.19	Manually check ULS punching shear at transferred walls/columns on transfer beams.	
8.2	Staged Building Analysis Method	
8.21	SAFE (STAGE) \rightarrow check (uncracked) Stiffness Factors (i.e. EI) for (transfer) slab and (transfer) beam are $(2/3^{rd}).(1.00)\approx0.66$ for Class 1 PT or Class 2 PT, note the further $2/3^{rd}$ reduction factor applied to simulate the additional deflection due to creep to storage loading instead of normal loading (i.e. creep coefficient, $\phi=2$ for storage loading instead of $\phi=1$ for normal loading). SAFE (STAGE) \rightarrow check (cracked) Stiffness Factors (i.e. EI) for (transfer) slab and (transfer) beam are $(2/3^{rd}).(0.50)\approx0.32$ for RC or Class 3 PT, note the further $2/3^{rd}$ reduction factor applied to simulate the additional deflection due to creep to storage loading instead of normal loading (i.e. creep coefficient, $\phi=2$ for storage loading instead of normal loading (i.e. creep coefficient, $\phi=2$ for storage loading instead of $\phi=1$ for normal loading).	
8.22	PT Tendon Modelling Check tendons based on prestress force and eccentricity required for load balancing and prestress force for average precompression. IC or PT Deflection Checks SAFE (STAGE) → check TLS = DL+ PT deflections \leq {[span/500 to span/350].C ₁ , 20mm}. SAFE (STAGE) → check SLS=DL+SDL+LL+ PT deflections \leq [span/250].C ₁ . SAFE (STAGE) → check SLS=DL+SDL+LL+ PT deflections \leq {[span/500 to span/350].C ₁ , 20mm}, note the creep term also includes the total (elastic, creep, shrinkage) axial shortening of the <u>one</u> storey in question. SAFE (STAGE) → check k _C .(DL+SDL)+LL+k _{C,PT} . PT deflections at façade beams \leq {[span/1000].C ₁ , 20mm}, note the creep term also includes the total (elastic, creep, shrinkage) axial shortening of the <u>one</u> storey in question. Note deflections above refer to deflections of all transfer slabs and slabs in the vicinity of transfer beams. Note C ₁ = {0.8 for flanged beams, 10.0/span(m) for spans > 10.0m, 0.9 for flat slabs}. Note deflection criteria to cl.3.4.6.3 and cl.3.4.6.4 BS8110-1 and cl.3.2.1.1 and cl.3.2.1.2 BS8110-2. Note creep factor, k _c calculated from equating (1-0.32).(1-0.4)DL+1.0SDL=k _c .(DL+SDL) based on multiplying factor (1-0.32) for the total DL creep deflection component (as opposed to the instantaneous deflection component) to (1-0.4) for the remaining 60% component of DL creep deflection after 1 month (cl.7.3 BS8110-2), giving k _c =[0.4DL+1.0SDL]/[DL+SDL]. Note likewise creep factor, k _{c,PT} calculated as (1-0.32/K _{LT} .K _{ST}).(1-0.4)=0.375.	

ITEM	CONTENT	1
	LPB LPB Image: Secondary beam Image: Secondary beam <t< td=""><td></td></t<>	
8.23	depth to the ratio of the basic span / effective depth (cantilever 7.0, simply supported 20.0, continuous 26.0). Note here that in the following subsection, slab refers to transfer slab and slabs in the vicinity of transfer beams and beam refers to transfer beam. [2] Tendon Modelling Check tendons based on prestress force and eccentricity required for load balancing and prestress force for average precompression. [2] or [2] Design Strip Support Lines , [3] (c) or [2] Design Strip Tributaries and [3] (c) or [2] Design Strip Design Strip Support Lines , [3] or [2] Design Strip Tributaries and [3] (c) or [2] Design Strip Support Lines , [3] or [2] Design Strip Tributaries and [3] (c) or [2] Design Strip Support Lines , (c) or [2] Design Strip Design Strip Support Lines , (c) or [2] Design Strip Design Strip Support Lines , (c) or [2] Design Strip Tributaries and [3] or [2] Design Strip Design Strip Support Lines , (c) or [2] Design Strip Design Sections Frequency Check design strip busport lines in X/Y directions. Check design strip Notations in X/Y directions . FE Analysis Method [3] Analysis and Design SAFE (STAGE) → check 12 (analysis and Design SAFE (STAGE) → check 12 (analysis support) . y check ULS bending effects Mus _{24FF} , note w.o./w. the differential (elastic, creep, shrinkage) axial shortening of adiacent supports. 3 check ULS shear effects Vus _{44FF} , note w.o./w. the differential (elastic, creep, shrinkage) axial shortening of adiacent supports. 3 check ULS shear effects Vus _{44FF} , note w.o./w. the differential (elastic, creep, shrinkage) axial shortening of adiacent supports. 3 check ULS bending effects Mus _{44FF} based on 1.4 x tributary width x (15.0-25.0kPa) x L/2, note w.o./w. the differential (elastic, creep, shrinkage) axial shortening of adiacent supports. 3 check ULS bending effects Mus _{54FF} based on 1.4 x tributary width x (15.0-25.0kPa) x L/2, note w.o./w. the differential (elastic, creep, shrinkage) axial	

ITEM	CONTENT	\checkmark
ITEM	 BM: -0.0 ≤ f, ≤ 0.33f₀ [CL1] -0.36√f₀ ≤ f₁ ≤ 0.33f₀ [CL2] -<> ≤ f₁ ≤ 0.33f₀ [CL3] FS: -0.0 ≤ f₁ ≤ 0.33f₀ [CL1] -0.36√f₀ ≤ f₁ ≤ 0.33f₀ [CL2] -0.45√f₀ ≤ f₁ ≤ 0.33f₀ [CL3] Note -<> = MAX {-0.25f₀, (0.7-1.1), (-0.58√f₀ to -0.82√f₀)-4N/mm?/1.0%}. → check SLS bottom stress f_{mab} ≤ f₁ ≤ f_{mab} ≤ f₁ ≤ 0.45√f₁₀ ≤ f₁ ≤ 0.44f₀ [CL3] FS: -0.0 ≤ f₁ ≤ 0.40f₀ [CL1] -0.36√f₀ ≤ f₁ ≤ 0.40f₀ [CL2] -0.45√f₁₀ ≤ f₁ ≤ 0.24f₀ [CL3] Note -<> = MAX {-0.25f₀, (0.7-1.1), (-0.58√f₀ to -0.82√f₀)-4N/mm?/1.0%}. Note by convention, +ve stress is compressive and -ve stress is tensile (<i>incansistent</i> with SAFE). [2] Design Sections Design SAFE (STAGE) → check design strip design sections [] analysis and design in X/Y directions → check TLS-10.14±fil deflections ≤ (span/250).C₁. → check kc.[0.1+50].14±fil-4fil deflections ≤ (span/250) to span/350].C₁, 20mm). > check Kc.[0.1+50].14±fil-4fil deflections = 4(span/250) to span/350].C₁, 20mm), note the creep term also includes the total (clastic, creep, shrinkage) axial shortening of the gne storey in question. > → check kc.[0.1+50].14±fil-4fil deflections at (span/250) to span/350].C₁. 20mm), note the creep term also includes the total (clastic, creep, shrinkage) axial shortening of the gne storey in question. Note C₁ = (0.8 for filanged beams, 10.0/span(m) for spans > 10.0m, 0.9 for flat stabs). Note deflection retria to 0.3-4.6.4 BSB10-1 and cl.3.2.1.1 and cl.3.2.1.2 BS8110-2.1. Note creep forter, k₁-calculated from equating 0.5(1-0.4)01+1.050.1=k₂(L)+50.50 bead solutation grapheres and in the spanse flat of the transming 60% component of DL creep deflection markers at minimal. > check tLS/SLS bending effects Mussesser Hmisssser are minimal. > check tLS/SLS bending effects Mussesser Hmissser are minimal. > check tLS/SLS bereding ffects Mussesser Hmissser at mini	
8.24	Note here that in the following subsection, slab refers to transfer slab and slabs in the vicinity of transfer beams and beam refers to transfer beam.	
	Ce or PT Analysis and Design Summary Report Check design strip design sections forces. Check design strip design sections rebar.	

ITEM	CONTENT	√
	Check design strip design sections moment capacities. Check design strip design sections dimensions. Check design strip design sections geometry. Check tendon and rebar plans.	
8.25	Manually check ULS shear stresses and shear design at beam/wall supports of transfer slabs.	
8.26	SAFE (STAGE) \rightarrow check ULS punching shear at wall/column supports of transfer slabs together with the associated required shear links A _{sv,req} .	
8.27	Manually check ULS shear stresses and shear design at transferred walls on transfer slabs.	
8.28	Manually check ULS punching shear at transferred walls/columns on transfer slabs.	
8.3	FE Model Ill-Conditioning	
8.31	Building Analysis Method BA \rightarrow TABLE \rightarrow Analysis \rightarrow Story Forces \rightarrow check consistency between the (non-cumulative) applied undecomposed loads tables (TABLE \rightarrow MODEL \rightarrow Structure Data \rightarrow Mass Summary \rightarrow (G+Q) Mass Summary by Story) and the reactions presented in the (cumulative) Story Forces table. Staged Building Analysis Method STAGE \rightarrow TABLE \rightarrow Analysis \rightarrow Story Forces \rightarrow check consistency between the (non-cumulative) applied undecomposed loads tables (TABLE \rightarrow MODEL \rightarrow Structure Data \rightarrow Mass Summary \rightarrow (G+Q) Mass Summary by Story) and the reactions presented in the (cumulative) Story Forces table.	
8.4	Load Take Down	
8.41	$BA/STAGE \rightarrow TABLE \rightarrow Analysis \rightarrow Story Forces for SLS load, TABLE \rightarrow MODEL \rightarrow Structure Data \rightarrow Material List \rightarrow Material List by Story for floor areas} \rightarrow check SLS load \approx 15.0-25.0kPa for typical concrete and 10.0kPa for typical steel residential and commercial buildings (ES). Note check load take down calculation for BA / STAGE.$	
8.42	BA/STAGE → DISPLAY → Frame/Pier/Spandrel/Link Forces → filtering out beams to only show walls/columns, check Axial Force in all walls/columns to visually inspect the sensibility of the load take down, e.g. only compression loads in walls/column, no zero loads to ensure no erroneous unattached walls/columns and no tension loads to ensure no erroneous hanging walls/columns . BA/STAGE → DISPLAY → Frame/Pier/Spandrel/Link Forces → enable display of Axial Force, Moment and Shear for appropriate Loading Combinations to visually display Bottom loading effects , noting that directions 2-2 and 3-3 refer to the local axes (i.e. axis direction 2-2 and 3-3, respectively) → check Axial Force (ensuring no uplift) for all walls/columns and Axial Force (ensuring no uplift), Moment and Shear for stability walls/columns (ES but primarily above the transfer floor and foundations). In addition for EQ combination cases, EQ base shear force for foundations to be calculated with the lateral and vertical EQ loads in the EQ combination cases enhanced by the overstrength and multiplicative factors, $\gamma_{Rd}.\Omega$ as per cl.4.4.2.6 BS EN1998-1. Note perform load take down calculation and likewise foundation SLS load combinations reporting for BA / STAGE .	
8.5	Sway Susceptibility (NHF, Wind, EQ)	
8.51	 Check Sway Classification Report Q ≤ 0.05 for λ ≥ 20 for BA / STAGE, else amplify lateral loads (wind, EQ) with the amplified sway factor, m = λ/(λ−1) to a maximum of m = 1.33 corresponding to Q ≤ 0.25 and λ ≥ 4.0 as the limit of linearity of the static analysis (cl.R6.2.6 ACI 318-14). ULS sway susceptibility to NHF / wind load combinations should be analysed with modified default stiffness parameters {Class 1 PT or Class 2 PT slab/beam: k_E=2.0, k_I=0.7, k_J=0.7; RC or Class 3 PT slab/beam: k_E=2.0, k_I=0.35, k_J=0.35; wall/column: k_E=2.0, k_I=0.7, k_J=0.7} and other lateral load combinations (EQ) deleted. ULS sway susceptibility to EQ load combinations should be analysed with modified default stiffness parameters {Class 1 PT or Class 2 PT slab/beam: k_E=2.0, k_I=0.7, k_J=0.7; RC or Class 3 PT slab/beam: k_E=2.0, k_I=0.35, k_J=0.35; wall/column: k_E=2.0, k_I=0.7, k_J=0.7} and other lateral load combinations (EQ) deleted. ULS sway susceptibility to EQ load combinations should be analysed with modified default stiffness parameters {Class 1 PT or Class 2 PT slab/beam: k_E=2.0, k_I=0.7, k_J=0.7; RC or Class 3 PT slab/beam: k_E=2.0, k_I=0.35, k_J=0.35; wall/column: k_E=2.0, k_I=0.35, k_J=0.35} and other lateral load combinations (NHF, wind) deleted. Further, the lateral EQ displacements from the SLS EQ load combinations are to be enhanced by the adopted behaviour factor, q as per cl.4.3.4 BS EN1998-1. 	
8.6	Lateral Deflections / Torsional Twist	
8.61	MODEL → Named Plots → Story Response Plots → optionally check total building lateral deflections to NHF , $\delta_{total} \leq H_{total}/500$ and relative storey drift, $\Delta \delta_{storey,I} \leq h_{storey,I}/500$ (ES). NHF load combinations should be analysed with modified default stiffness parameters {Class 1 PT or Class 2 PT slab/beam: k _E =2.0, k _I =1.0, k _J =1.0; RC or Class 3 PT slab/beam: k _E =2.0, k _I =0.5, k _J =0.5; wall/column: k _E =2.0, k _I =1.0, k _J =1.0}, NHF load factors reset to 1.0, other lateral load combinations (wind, EQ) deleted and as a last resort adopting flanged beam sections in lieu of rectangular beam sections.	
8.62	BA → DISPLAY → Deformed Shape → optionally check on-plan torsional twist due to NHF indicating if the offset between the centre of gravity / mass and centre of stiffness is ≤ span/500 (ES). NHF load combinations should be analysed with modified default stiffness parameters {Class 1 PT or Class 2 PT slab/beam: $k_E=2.0$, $k_I=1.0$, $k_J=1.0$; RO or Class 3 PT slab/beam: $k_E=2.0$, $k_I=0.5$, $k_J=0.5$; wall/column: $k_E=2.0$, $k_I=1.0$, $k_J=1.0$ }, NHF load combinations (wind, EQ) deleted and as a last resort adopting flanged beam sections in lieu of rectangular beam sections.	

ITEM	CONTENT				\checkmark
8.63	$H_{total}/500$ and $k_{I}=1.0$, $k_{J}=100$ load factors beam section	nd relative storey drift, $\Delta \delta_{storey}$, analysed with modified defau 1.0; RC or Class 3 PT slab/bea is reset to 1.0, other lateral loa ons in lieu of rectangular beam	$k_{I} \leq h_{storey,I}/500 (ES) to cl.3.2.2.2 lt stiffness parameters {Class and k_E=2.0, k_I=0.5, k_J=0.5; wall d combinations (NHF, EQ) delet a sections.$	ing lateral deflections to wind , $\delta_{total} \leq 2 \text{ BS8110-2}$. SLS wind load combinations 1 PT or Class 2 PT slab/beam: $k_E=2.0$, $l/column$: $k_E=2.0$, $k_I=1.0$, $k_J=1.0$ }, wind ted and as a last resort adopting flanged	
8.64	the centre analysed wi RC or Class reset to 1.0	of elevation and centre of s ith modified default stiffness p s 3 PT slab/beam: k _E =2.0, k _I	stiffness is \leq span/500 (ES). S arameters {Class 1 PT or Class =0.5, k ₃ =0.5; wall/column: k _E = tions (NHF, EQ) deleted and a	to wind indicating if the offset between SLS wind load combinations should be 2 PT slab/beam: $k_E=2.0$, $k_I=1.0$, $k_J=1.0$; 2.0, $k_I=1.0$, $k_J=1.0$ }, wind load factors as a last resort adopting flanged beam	
8.65	$H_{total}/250$ a combination $k_E=2.0, k_I=k_3=0.5$ and	nd relative storey drift, v.q. Δk ns should be analysed with mo =1.0, k ₃ =1.0; RC or Class 3 d other lateral load combination	$\delta_{storey,I} \leq h_{storey,I}/250$ (ES) as per- odified default stiffness parameter PT slab/beam: $k_E=2.0$, $k_I=0.5$ ons (NHF, wind) deleted. Further	In a lateral deflections to EQ , v.q. $\delta_{total} \leq$ er cl.4.4.3.2 BS EN1998-1. SLS EQ load ers {Class 1 PT or Class 2 PT slab/beam: i, k ₃ =0.5; wall/column: k _E =2.0, k ₁ =0.5, r, the lateral EQ displacements from the factor, q as per cl.4.3.4 BS EN1998-1.	
8.66	BA → DISPLAY → Deformed Shape → check on-plan torsional twist due to EQ indicating if the offset between the centre of gravity / mass and centre of stiffness is ≤ span/500 (ES). SLS EQ load combinations should be analysed with modified default stiffness parameters {Class 1 PT or Class 2 PT slab/beam: $k_E=2.0$, $k_I=1.0$, $k_J=1.0$; RC or Class 3 PT slab/beam: $k_E=2.0$, $k_I=0.5$, $k_J=0.5$; wall/column: $k_E=2.0$, $k_I=0.5$, $k_J=0.5$ } and other lateral load combinations (NHF, wind) deleted. Further, the lateral EQ displacements from the SLS EQ load combinations are to be enhanced by the adopted behaviour factor, q as per cl.4.3.4 BS EN1998-1.				
8.7	Beam Des				
8.71	TABLE \rightarrow Design \rightarrow Concrete Design \rightarrow Concrete Beam Summary \rightarrow check design status of RC beams (ES).Check design status of RC beams design strips design sections (ES).				
8.72			Design \rightarrow Start Design/Check for esign sections tendons (and reba	or BA / STAGE (ES). ar) design for BA / STAGE (ES).	
8.73	storey (ES).	els, check common beam c		and between similar beams within the and between similar beams within the	
8.74	In RC models, Design → Concrete Frame Design → Display Design Info → Design Output → Rebar Percentage → check % steel << 4% and design shear stress \approx 3N/mm ² (TABLE → Design → Concrete Design → Concrete Beam Summary and TABLE → Model → Definitions → Frame Sections → Frame Sections for sectional area, A _C and BA/STAGE → TABLE → Design → Design Forces → Beam Design Forces for V _{ULS} to calculate ULS shear stress $\tau = V_{ULS}/A_C$) << 5N/mm ² for BA / STAGE (ES including duplicate storeys). In PT models, check design shear stress \approx 3N/mm ² (TABLE → Design → Concrete Design → Concrete Beam Summary and TABLE → Model → Definitions → Frame Sections → Frame Sections for sectional area, A _C and BA/STAGE → TABLE → Design → Design Forces → Beam Design Forces for V _{ULS} to calculate ULS shear stress τ = V _{ULS} /A _C) << 5N/mm ² for BA / STAGE (ES including duplicate storeys).				
8.75			n report for BA / STAGE (ES in n report for BA / STAGE (ES in		
8.76	In PT models, check beam detailed design report for BA / STAGE (ES including duplicate storeys). In RC and PT models, manually perform ULS longitudinal shear check within web and between web and flanges for heavily loaded transfer beams if ULS shear stresses are greater than those stipulated on T.5.5 BS8110-1 for BA / STAGE . Manually perform deep beam design for the transfer beam should the span to depth ratio be ≤ 2.0 simply-supported or 2.5 continuous (CIRIA Guide 2). Manually perform strut and tie truss analogy design for the transferred wall (acting as the diagonal compression element) and transfer beam (acting as the tension element).				
8.77	actual span (ES).) / depth ratio based on the to	otal beam span instead of the s	on-prismatic beams by recalculating the segmented beam span for BA / STAGE	
8.78	Building R		rehensive design check (ES)		
8.781	${\sf BA} \rightarrow$	check design \rightarrow	% steel << 4% \rightarrow	$\tau \approx 3 << 5N/mm^2 \rightarrow$	
8.782	default stiffne k _I =0.5, k _J =0.	ess parameters {Class 1 PT or Cla .5; wall/column: k _E =1.0, k _I =0.5, k	lss 2 <mark>PT</mark> slab/beam: k _E =1.0, k₁=1.0, _J =0.5}.	$ \begin{aligned} \tau &\approx 3 << 5 N/mm^2 \rightarrow \\ \text{ysed on models with the following modified} \\ k_3 = 1.0; \ \textbf{RC} \text{ or Class 3 PT slab/beam: } k_E = 1.0, \end{aligned} $	
8.79		dification of RC and PT beam operation of outer perimeter ton	letailing as follows: - sion links at heavily loaded trans	sfer beam sections.	

ITEM	CONTENT					√	
	 (c) inclus requir (d) appro (e) search (f) for m maxin min { EN199 	ion of additional shear links / ement of cl.3.12.7.2 BS8110- priate enhancement to non-pr n for single rebar specification nodels with EQ loads stabilis num link spacing, s should be beam depth / 4; 24 x link	/ hooks for very v 1 (ES). rismatic beams (ES) , e.g. 1T12, 1T16, 3 sed by moment fr e provided based o diameter; 225mm;	er beam beneath transferred wide beams to satisfy the 1500 1. 1720, 1725, 1732 or 1740 with ames, enhancement to the poin cl.5.4.3.1.2 BS EN1998-1 (E 8 x longitudinal bar diamete 4; 24 x link diameter; 175mr	in the beam dxfs (ES). primary seismic beam DCM) which states s = r} and cl.5.5.3.1.3 BS		
8.8	Wall/Colu	mn Design					
8.81				$\begin{array}{l} Immary \rightarrow check \ design \ status \\ Immary \rightarrow check \ design \ status \end{array}$			
8.82	Design \rightarrow Shear Wall Design \rightarrow Start Design/Check for both frame analysis methods (ES). Note wall biaxial bending theory N/A. Design \rightarrow Concrete Frame Design \rightarrow Start Design/Check for both frame analysis methods and both column design theories , i.e. BA + cl.3.8.4.5 BS8110-1 theory, BA + biaxial bending theory, STAGE + cl.3.8.4.5 BS8110-1 theory and STAGE + biaxial bending theory (ES). Note that the cl.3.8.4.5 BS8110-1 theory is more conservative (less economic) compared to the biaxial bending theory.						
8.83	Check reinf	orcement only increases dowr	the building and d	ecreases up the building (in ge	neral).		
8.84	Check com	mon column details betwee	en similar columns v	within the storey (ES).			
8.85	Design \rightarrow Shear Wall Design \rightarrow Display Design Info \rightarrow Design Output \rightarrow Pier Reinforcing Ratios \rightarrow check % steel for walls (i.e. sections without through-thickness shear links) << 2% and design shear stress \approx 3N/mm ² (TABLE \rightarrow Design \rightarrow Shear Wall Design \rightarrow Shear Wall Pier Summary and TABLE \rightarrow Model \rightarrow Definitions \rightarrow						
8.86	TABLE → Design → Concrete Design → Concrete Column PMM Envelope → check % steel for columns (i.e. sections with through-thickness shear links) << 5% and design shear stress \approx 3N/mm ² (TABLE → Design → Concrete Design → Concrete Column Summary and TABLE → Model → Definitions → Frame Sections → Frame Sections for sectional area, A _c and BA/STAGE → TABLE → Design → Concrete Design → Concrete Column Shear [Envelope for V _{ULS} to calculate ULS shear stress $\tau = V_{ULS}/A_c$) << 5N/mm ² for both frame analysis methods and both column design theories, i.e. BA + cl.3.8.4.5 BS8110-1 theory, BA + biaxial bending theory, STAGE + cl.3.8.4.5 BS8110-1 theory and STAGE + biaxial bending theory (ES).						
8.87	{< 10.0} fo Check column defined as l	r walls that are to be correctly mn detailed design report \rightarrow braced and {< 10.0 or > 10.0	<pre>/ defined as unbrac search for {< 15 } for columns that a</pre>	walls that are to be correctly ed (ES). Note wall biaxial bend .0 or > 15.0} for columns th are to be correctly defined as u	ing theory N/A. at are to be correctly		
8.88		all/column final comprehe					
8.881	$BA \rightarrow$	BS8110-1 theory →	check design \rightarrow	% steel << 2%/5% #A →	$\tau \approx 3 << 5 \text{N/mm}^2 \rightarrow$		
8.882	$BA \rightarrow$	biaxial bending theory \rightarrow	check design \rightarrow	% steel << 2%/5% #A →	$\tau \approx 3 << 5 \text{N/mm}^2 \rightarrow$		
8.883	STAGE →	BS8110-1 theory \rightarrow	check design \rightarrow	% steel << 2%/5% #A \rightarrow	$\tau \approx 3 << 5 \text{N/mm}^2 \rightarrow$		
8.884	STAGE \rightarrow biaxial bending theory \rightarrow check design \rightarrow % steel << 2%/5% #A \rightarrow $\tau \approx 3 << 5N/mm^2 \rightarrow$ #A Note for models with EQ loads stabilised by moment frames, the maximum primary seismic column % steel is 4%, not 5%.#B Note for models with EQ loads, ULS EQ load combinations should be analysed on models with the following modified default stiffness parameters {Class 1 PT or Class 2 PT slab/beam: $k_E = 1.0$, $k_1 = 1.0$, $k_2 = 1.0$; RC or Class 3 PT slab/beam: $k_E = 1.0$, $k_1 = 0.5$, $k_3 = 0.5$; wall/columns as appropriate for accidental loads (e.g. car park vehicular impact loads) and as#C Note enhance walls/columns as appropriate for accidental loads (e.g. car park vehicular impact loads) and as						
		 disproportionate collapse key elements. Manual modification of wall/column detailing as follows: - (a) manual addition of nominal through-thickness links in column-like vertical elements detailed as walls (ES). (b) for models with EQ loads stabilised by moment frames, enhancement to the primary seismic column maximum link spacing, s should be provided based on cl.5.4.3.2.2 BS EN1998-1 (DCM) which states s = min {(minimum column dimension excluding cover and half link diameter) / 2; 175mm; 8 x longitudinal bar diameter} and cl.5.5.3.2.2 BS EN1998-1 (DCH) which states s = min {(minimum column dimension excluding cover and half link diameter) / 3; 125mm; 6 x longitudinal bar diameter} (ES). 					
8.89	disproportion (a) manu (b) for m maxim min { diame exclud	dification of wall/column detai al addition of nominal through odels with EQ loads stabilis num link spacing, s should be (minimum column dimension eter} and cl.5.5.3.2.2 BS EN ding cover and half link diame	n-thickness links in o ed by moment fra e provided based o excluding cover and 1998-1 (DCH) wh	mes, enhancement to the pr n cl.5.4.3.2.2 BS EN1998-1 (E d half link diameter) / 2; 175m ich states s = min {(minimu	imary seismic column DCM) which states s = m; 8 x longitudinal bar um column dimension		
9.0	disproportion (a) manu (b) for m maxin min { diame exclue FOUNDAT	dification of wall/column detai al addition of nominal through odels with EQ loads stabilis num link spacing, s should be (minimum column dimension eter} and cl.5.5.3.2.2 BS EN	n-thickness links in o ed by moment fra e provided based o excluding cover and 1998-1 (DCH) wh	mes, enhancement to the pr n cl.5.4.3.2.2 BS EN1998-1 (E d half link diameter) / 2; 175m ich states s = min {(minimu	imary seismic column DCM) which states s = m; 8 x longitudinal bar um column dimension		
	disproportion (a) manu (b) for m maxin min { diame exclue FOUNDAT	dification of wall/column detai al addition of nominal through odels with EQ loads stabilis num link spacing, s should be (minimum column dimension eter} and cl.5.5.3.2.2 BS EN ding cover and half link diame ION CHECKS wable Soil Stress Ultimate	-thickness links in o ed by moment fra e provided based o excluding cover and (1998-1 (DCH) wh ter) / 3; 125mm; 6	mes, enhancement to the pr n cl.5.4.3.2.2 BS EN1998-1 (E d half link diameter) / 2; 175m ich states s = min {(minimu	imary seismic column OCM) which states s = m; 8 x longitudinal bar um column dimension iS).		

ITEM	CONTENT	\checkmark				
9.21	Check Footing Depth, Surcharge Height and Allowable Stress of Soil. Note perform load take down calculation for BA / STAGE for all load combinations.					
9.22	Perform a detailed design check of all pad footings for BA / STAGE for all load combinations.					
9.3	Strip Footing					
9.31	Check allowable stress of soil (kPa). Check coefficient of subgrade reaction (kN/m ³).					
9.32	Check range of Subgrade Coefficients, Footing Width and Footing Depth. Note perform load take down calculation for BA / STAGE for all load combinations.					
9.33	Perform a detailed design check of all strip footings for BA / STAGE for all load combinations.					
9.34	Check (strip footing) beam detailed design report for BA / STAGE for all load combinations.					
9.4	Raft / Piled Raft Footing	1				
9.41	Check allowable stress of soil (kPa). Check coefficient of subgrade reaction (kN/m ³). Check pile SWL and vertical Pile Spring Coefficient. Ensure no uniformly distributed SDL or LL on the raft / piled raft as this will not translate into bending or shear effects on the raft / piled raft, instead employ point loads with their spacing distributed to depict reality.					
9.42	Check raft / piled raft analysis by choosing <i>not to</i> Ignore Bearing Capacity of Soil. Note perform load take down calculation for BA / STAGE for all load combinations.					
9.43	Check raft / piled raft SLS rotations $\leq 1/250$ to BS8110-2 cl.3.2.1.1 (note the Stiffness Factors (i.e. factor for bending rigidity EI) for (raft strip) beam and (raft) slab elements should be set to $(2/3^{rd})$.(0.50)=0.32 (the further $2/3^{rd}$ reduction factor applied to simulate the additional deflection due to creep to storage loading instead of normal loading (i.e. creep coefficient, $\phi=2$ for storage loading instead of $\phi=1$ for normal loading))). Note perform load take down calculation for BA / STAGE for all load combinations. Check raft / piled raft SLS tilt $\leq 1/400$ (note that tilt is unaffected by E and I values but instead is dependent only on the loading magnitude and distribution and the soil stiffness). Note perform load take down calculation for BA / STAGE for all load combinations.					
9.44	Check raft / piled raft $ M_{11} + M_{12} $ and $ M_{22} + M_{12} \rightarrow$ manually check rebar areas required {As(d)1, As(d)2}, noting minimum steel. Note perform load take down calculation for BA / STAGE for all load combinations.					
9.45	Check raft / piled raft soil pressure. Note perform load take down calculation for BA / STAGE for all load combinations.					
9.46	Manually check raft ULS shear stresses and shear design at beam/wall framing. Note perform load take down calculation for BA / STAGE for all load combinations.					
9.47	Check raft ULS punching shear at wall/column framing. Note perform load take down calculation for BA / STAGE for all load combinations.					
9.48	Check (raft strip) beam detailed design report for BA / STAGE for all load combinations.					
9.49	Check factored pile forces (ensuring no tension due to uplift) against the factored pile capacity (especially for stability walls attracting significant moments obscuring the obvious adequacy of the pile group capacity). Note perform load take down calculation for BA / STAGE for all load combinations.					
9.5	Pile Footing					
9.51	Check pile SWL, Pile Size, vertical pile Spring Coefficient, Pile Cap Depth and Surcharge Height. Note perform load take down calculation for BA / STAGE for all load combinations.					
9.52	Perform a detailed design check of all pile footings for BA / STAGE for all load combinations.					

ITEM	CONTENT	\checkmark
9.53	Note for pile caps with complex geometries (i.e. more than 4 pile pile-groups), employ the concepts of piled raft analysis and design choosing <i>to</i> Ignore the Bearing Capacity of Soil and incorporating the soil surcharge loads into the (pile cap) slab superimposed dead loads.	
10.0	QUANTITY CHECKS	
10.1	General	
10.11	Check estimate of the concrete volume (m ³). Check estimate of the formwork area (m ²). Check estimate of the steel / tendon quantity (kg).	
10.12	 In RC or PT models, check concrete quantity to typical concrete equivalent floor thicknesses (m³/10³m²) → 250-500. In RC or PT models, check formwork quantity to typical formwork rates (m²/m²) → 1.5-2.5. In RC models, check rebar quantity to typical rebar tonnages (kg/m³) → one-way or two-way slabs 75-100, flat slabs 125-175, transfer slabs 150-350, beams 125-250, transfer beams 150-350, walls 100, columns 150-300, pile caps 150-200. In PT models, check tendon quantity to typical tendon tonnages (kg/m³) → slabs 20-25, transfer slabs 20-25, beams 40-50. In PT models, check rebar quantity to typical rebar tonnages (kg/m³) → slabs 20-35, transfer slabs 40-70, beams 40-70. 	

Permissible Stress [N/mm ²] [BS8110, TR.43]											
		lity Class 1 al Tensile sses	Flexural Tens Uncra	lity Class 2 sile Stresses, acked 2 Cracking)	Serviceability Class 3 Flexural Tensile Stresses Cracked						
	Тор	Bottom	Тор	Bottom	Тор	Bottom					
TLS	0.50 f _{ci} #A1	0.50 f _{ci} #A1	0.50 f _{ci} #A1	0.50 f _{ci} #A1	0.50 f _{ci} #A1	0.50 f _{ci} #A1					
comp f' _{max,t/b}	0.24 f _{ci} #A2	0.33 f _{ci} #A2	0.24 f _{ci} #A2	0.33 f _{ci} #A2	0.24 f _{ci} #A2	0.33 f _{ci} #A2					
TLS tensile	-1.0 ^{#B}	-1.0 ^{#B}	-0.36 √f _{ci} ^{#B}	-0.36 √f _{ci} ^{#B}	-0.25 f _{ci} ^{#B1} -0.45 √f _{ci} ^{#B2}	-0.25 f _{ci} ^{#B1} -0.45 √f _{ci} ^{#B2}					
f' _{min,t/b} SLS	0.33 f _{cu} #C1	0.40 f _{cu} #C1	0.33 f _{cu} #C1	0.40 f _{cu} #C1	0.33 f _{cu} ^{#C1}	0.40 f _{cu} ^{#C1}					
comp f _{max,t/b}	0.33 f _{cu} #C2	0.24 f _{cu} #C2	0.33 f _{cu} #C2	0.24 f _{cu} #C2	0.33 f _{cu} #C2	0.24 f _{cu} #C2					
SLS tensile f _{min,t/b}	-0.0 ^{#D}	-0.0 ^{#D}	-0.36 √f _{cu} ^{#D}	-0.36 √f _{cu} ^{#D}	-<> ^{#D1} -0.45 √f _{cu} ^{#D2}	-<> ^{#D1} -0.45 √f _{cu} ^{#D2}					

Appendix A: **PT** Permissible Stress

#A1: Note beam, one-way slab or two-way slab option to cl.4.3.5.1 BS8110.

#A2: Note flat slab option to T.2 TR.43 and cl.6.10.2 TR.43.

#B: Note beam, one-way slab, two-way slab or flat slab option to cl.4.3.5.2 BS8110.

#B1: Note beam, one-way slab or two-way slab option to cl.4.3.5.2 BS8110.

#B2: Note flat slab option to T.2 TR.43 and cl.6.10.2 TR.43 based on <u>full tributary width</u> design strip.

#C1: Note beam, one-way slab or two-way slab option to cl.4.3.4.2 BS8110.

#C2: Note flat slab option to T.2 TR.43.

#D: Note beam, one-way slab, two-way slab or flat slab option to cl.4.3.4.3 BS8110.

#D1: Note beam, one-way slab or two-way slab option to cl.4.3.4.3 BS8110. Note -<.....> = MAX {-0.25f_{cu}, (0.7-1.1).(- $0.58\sqrt{f_{cu}}$ to - $0.82\sqrt{f_{cu}}$)-4N/mm²/1.0%} as the code allows for an increase in the tensile stress limit from 1% of longitudinal steel (untensioned reinforcement) onwards (-4N/mm² for every 1% of longitudinal steel (untensioned reinforcement), increasing proportionally, up to the specified upper limit of - $0.25f_{cu}$). **#D2**: Note flat slab option to T.2 TR.43 based on <u>full tributary width</u> design strip.

Table 4.2 – Design Hypothetical Flexural Tensile Stresses for Class 3 Members [N/mm ²]								
Group	Limiting Crack Width	Design St	ress for Concrete Grade					
Group	[mm]	30	40	50				
Grouted	0.1	3.2	4.1	4.8				
Post-Tensioned Tendons	0.2	3.8	5.0	5.8				

Table 4.3 – Depth Factors for Design Tensile Stresses for Class 3 Members								
Depth of Member [mm]	Factor							
≤ 200	1.1							
400	1.0							
600	0.9							
800	0.8							
≥ 1000	0.7							

Permissible Stress [N/mm ²] [ACI318]											
		lity Class U acked	Serviceabi Trans	lity Class T sition	Serviceability Class C Cracked						
	Тор			Bottom	Тор	Bottom					
TLS comp f' _{max,t/b}	0.60 f _{ci} ′ ^{#A}	0.60 f _{ci} ′ ^{#A}									
TLS tensile f' _{min,t/b}	-0.25 √f _{ci} ′ ^{#B}	-0.30 f _{ci} ′ ^{#B1} -0.50 √f _{ci} ′ ^{#B2}	-0.30 f _{ci} ′ ^{#B1} -0.50 √f _{ci} ′ ^{#B2}								

SLS comp f _{max,t/b}	0.60 f _c ′ ^{#C}	0.60 fc' ^{#C}	0.60 fc' ^{#C}			
SLS tensile f _{min,t/b}	-0.62 √fc′ ^{#D1} -0.50 √fc′ ^{#D2}	-0.62 √fc′ ^{#D1} -0.50 √fc′ ^{#D2}	-1.00 √fc′ ^{#D1} -0.50 √fc′ ^{#D2}	-1.00 √fc′ ^{#D1} -0.50 √fc′ ^{#D2}	-0.30 fc′ ^{#D1} -0.50 √fc′ ^{#D2}	-0.30 fc' $^{\#D1}$ -0.50 $\sqrt{fc'}$

#A: Note beam, one-way slab, two-way slab or flat slab option to cl.24.5.3.1 ACI318.

#B: Note beam, one-way slab, two-way slab or flat slab option to cl.24.5.3.2 ACI318.

#B1: Note beam, one-way slab or two-way slab option analogous to cl.4.3.5.2 BS8110. **#B2**: Note flat slab option to cl.24.5.3.2.1 ACI318 based on full tributary width design strip.

#C: Note beam, one-way slab, two-way slab or flat slab option to cl.24.5.4.1 ACI318.

#D1: Note beam, one-way slab or two-way slab option to cl.24.5.2.1 ACI318 and analogous to cl.4.3.4.3 BS8110.

#D2: Note flat slab option to cl.24.5.2.1 ACI318 based on *full tributary width* design strip.

	Permissible Stress [N/mm ²] [AS3600]											
	Serviceabi Uncra			lity Class T sition	Serviceability Class C Cracked							
	Тор	Bottom	Тор	Bottom	Тор	Bottom						
TLS comp f' _{max,t/b}	0.50 f _{ci} ′ ^{#A}	0.50 f _{ci} ′ ^{#A}	0.50 f _{ci} ′ ^{#A}	0.50 f _{ci} ′ ^{#A}	0.50 f _{ci} ′ ^{#A}	0.50 f _{ci} ′ ^{#A}						
TLS tensile f' _{min,t/b}	-0.25 √f _{ci} ′ ^{#B}	-0.25 √f _{ci} ′ ^{#B}	-0.60 √f _{ci} ′ ^{#B}	-0.60 √f _{ci} ′ ^{#B}	-0.30 f _{ci} ′ ^{#B1} -0.60 √f _{ci} ′ ^{#B2}	-0.30 f _{ci} ′ ^{#B1} -0.60 √f _{ci} ′ ^{#B2}						
SLS comp f _{max,t/b}	0.50 fc′ ^{#C}	0.50 fc′ ^{#C}	0.50 fc′ ^{#C}	0.50 fc′ ^{#C}	0.50 fc′ ^{#C}	0.50 fc′ ^{#C}						
SLS tensile f _{min,t/b}	-0.25 √fc′ ^{#D}	-0.25 √fc′ ^{#D}	-0.60 √fc′ ^{#D}	-0.60 √fc′ ^{#D}	-0.30 fc′ ^{#D1} -0.60 √fc′ ^{#D2}	-0.30 fc′ ^{#D1} -0.60 √fc′ ^{#D2}						

#A: Note beam, one-way slab, two-way slab or flat slab option to cl.8.1.6.2 AS3600.

#B: Note beam, one-way slab, two-way slab or flat slab option to cl.8.6.2 and cl.9.4.2 AS3600.

#B1: Note beam, one-way slab or two-way slab option analogous to cl.4.3.5.2 BS8110.

#B2: Note flat slab option to cl.9.4.2 AS3600 based on <u>column strip tributary width</u> design strip.

#C: Note beam, one-way slab, two-way slab or flat slab option to cl.8.1.6.2 AS3600.

#D: Note beam, one-way slab, two-way slab or flat slab option to cl.8.6.2 and cl.9.4.2 AS3600.

#D1: Note beam, one-way slab or two-way slab option analogous to cl.4.3.4.3 BS8110.

#D2: Note flat slab option to cl.9.4.2 AS3600 as an alternative to cl.6.9.5.3 AS3600 based on column strip tributary width design strip.

Permissible Stress [N/mm ²] [EC2 and TR.43-2]											
	Serviceabil Uncra	-		lity Class T sition	Serviceability Class C Cracked						
	Тор	Bottom	Тор	Bottom	Тор	Bottom					
TLS comp f' _{max,t/b}	0.50 f _{ci} ' ^{#A1} 0.30 f _{ci} ' ^{#A2}	0.50 f _{ci} ′ ^{#A1} 0.40 f _{ci} ′ ^{#A2}	0.50 f _{ci} ′ ^{#A1} 0.30 f _{ci} ′ ^{#A2}	0.50 f _{ci} ′ ^{#A1} 0.40 f _{ci} ′ ^{#A2}	0.50 f _{ci} ′ ^{#A1} 0.30 f _{ci} ′ ^{#A2}	0.50 f _{ci} ′ ^{#A1} 0.40 f _{ci} ′ ^{#A2}					
TLS tensile f' _{min,t/b}	$\frac{\text{-0.21 } f_{ci}{}^{\prime 2/3 \ \#B1}}{\text{-0.09 } f_{ci}{}^{\prime 2/3 \ \#B2}}$	-0.21 f _{ci} ^{2/3 #B1} -0.09 f _{ci} ^{2/3 #B2}	-0.21 f _{ci} ^{2/3 #B1} -0.09 f _{ci} ^{2/3 #B2}	-0.21 f _{ci} ^{2/3 #B1} -0.09 f _{ci} ^{2/3 #B2}	-0.30 f _{ci} ′ ^{#B1} -0.27 f _{ci} ′ ^{2/3 #B2}	-0.30 f _{ci} ′ ^{#B1} -0.27 f _{ci} ′ ^{2/3 #B2}					
SLS comp f _{max,t/b}	0.60 fc' ^{#C1} 0.40 fc' ^{#C2}	0.60 f _c ' ^{#C1} 0.30 f _c ' ^{#C2}	0.60 f _c ' ^{#C1} 0.40 f _c ' ^{#C2}	0.60 fc' ^{#C1} 0.30 fc' ^{#C2}	0.60 f _c ' ^{#C1} 0.40 f _c ' ^{#C2}	0.60 fc' ^{#C1} 0.30 fc' ^{#C2}					
SLS tensile f _{min,t/b}	-0.21 fc ^{2/3 #D1} -0.09 fc ^{2/3 #D3}	-0.21 fc ^{2/3 #D1} -0.09 fc ^{2/3 #D3}	-0.21 fc ^{2/3 #D1} -0.09 fc ^{2/3 #D3}	-0.21 fc ^{2/3 #D1} -0.09 fc ^{2/3 #D3}	-<> ^{#D2} -0.27 fc ^{2/3} ^{#D3}	-<> ^{#D2} -0.27 fc ^{'2/3} ^{#D3}					

#A1: Note beam, one-way slab or two-way slab option to cl.5.8.2 TR.43-2.

#A2: Note flat slab option to T.4 TR.43-2 and cl.5.8.2 TR.43-2.

#B1: Note beam, one-way slab or two-way slab option to cl.5.8.2 TR.43-2 and analogous to cl.4.3.5.2 BS8110.

#B2: Note flat slab option to T.4 TR.43-2 and cl.5.8.2 TR.43-2 based on full tributary width design strip.

#C1: Note beam, one-way slab or two-way slab option to cl.5.10.2.2 EC2.

#C2: Note flat slab option to T.4 TR.43-2.

#D1: Note beam, one-way slab or two-way slab option analogous to cl.5.8.2 TR.43-2.

#D2: Note beam, one-way slab or two-way slab option to cl.5.8.1 TR.43-2. Note -<.....> = MAX {-0.30f_c', (-0.40f_c'^{2/3} to -0.50f_c'^{2/3})-4N/mm²/1.0%} as the code allows for an increase in the tensile stress limit from 1% of longitudinal steel (untensioned reinforcement) onwards (-4N/mm² for every 1% of longitudinal steel (untensioned reinforcement), increasing proportionally, up to the specified upper limit of -0.30fc'). **#D3**: Note flat slab option to T.4 TR.43-2 based on **full tributary width** design strip.

Appendix B: PT Prestress Strand Types

PT Prestress Strand Types	φ _s [mm]	A₅ [mm²]	Ep [GPa]	f _{pk} [N/mm²]	F _{pk} [kN]
[ASTM A416] Grade 270 ϕ_s = 12.7mm Strand	12.70	98.71	186.0	1860	183.7
[ASTM A416] Grade 270 ϕ_s = 15.24mm Strand	15.24	140.00	186.0	1860	260.7
[BS5896] 7-Wire Super $\phi_s = 12.9$ mm Strand	12.90	100.00	195.0	1860	186.0
[BS5896] 7-Wire Super ϕ_s = 15.7mm Strand	15.70	150.00	195.0	1860	279.0

Appendix C: PT Tendon Duct Dimensions

	PT Tendon Ducts Horizontal $D_{T,H}$ and Vertical $D_{T,V}$ External Dimensions												
Maximum Number of Prestress Strands in Each Tendon, N₅	lumber of Default for 0.5" Prestress Strands			for 0.6″ ands	Remark								
	D _{т,н} (mm)	D _{T,V} (mm)	D _{т,н} (mm)	D _{T,V} (mm)									
3	55	23	55	23	Default refers to flat ducts								
5	75	23	90	23	Default refers to flat ducts								
7	55	55	70	70	Default refers to round ducts								
12	80	80	85	85	Default refers to round ducts								
19	95	95	100	100	Default refers to round ducts								
27	100	100	115	115	Default refers to round ducts								
37	115	115	135	135	Default refers to round ducts								
42	125	125	145	145	Default refers to round ducts								

Appendix D: RC or PT Load Combination Cases

Load	Description	Load Factor								
Combo	Description	ΡΤ	НҮР	DL	SDL	LL	WLx	WLy	NHLx	NHLY
	Ultimate Limit State (ULS)									
ULS01	1.4DL+1.4SDL+1.6LL+HYP #A, #B		1.0	1.4	1.4	1.6	-	_	-	-
ULS02	1.4DL+1.4SDL±1.0NHL+HYP #A, #C		1.0	1.4	1.4		_	_	±1.0	_
01302		-	1.0	1.4	1.4	-	-	-	-	±1.0
ULS03	1.0DL+1.0SDL±1.0NHL+HYP #A	-	1.0	1.0	1.0	-	-	-	±1.0	-
UL303	1.0DL+1.03DL±1.0NHL+HTP	-	1.0	1.0	1.0	-	-	-	-	±1.0
ULS04	1.2DL+1.2SDL+1.2LL±1.0NHL	-	1.0	1.2	1.2	1.2	-	-	±1.0	-
01304	+ <mark>HYP</mark> #A, #C	-	1.0	1.2	1.2	1.2	-	-	-	±1.0
ULS05	1.4DL+1.4SDL±1.4WL+HYP #A	-	1.0	1.4	1.4	-	±1.4	-	-	-
01303		-	1.0	1.4	1.4	-	-	±1.4	-	-
ULS06	1.0DL+1.0SDL±1.4WL+HYP #A	-	1.0	1.0	1.0	-	±1.4	-	_	-
01300		-	1.0	1.0	1.0	-	-	±1.4	-	-
ULS07	1.2DL+1.2SDL+1.2LL±1.2WL	-	1.0	1.2	1.2	1.2	±1.2	-	-	-
01307	+ <mark>HYP</mark> #A	-	1.0	1.2	1.2	1.2	-	±1.2	-	-
	Transfer Limit State (TLS)									
TLS01	1.0DL+1.15 <mark>PT</mark> #D	1.15	-	1.0	-	-	_	-	-	-
	Serviceability Limit State (SLS)									
SLS01	1.0DL+1.0SDL+1.0LL+PT #A	1.0	-	1.0	1.0	1.0	-	-	_	-
SLS02	1.0DL+1.0SDL+1.0LL±1.0NHL	1.0	-	1.0	1.0	1.0	_	-	±1.0	-
31302	+ <mark>PT</mark> ^{#A}	1.0	-	1.0	1.0	1.0	-	-	-	±1.0
SLS03	1.0DL+1.0SDL+1.0LL±1.0WL	1.0	-	1.0	1.0	1.0	±1.0	_	-	-
3L303	+ <mark>PT</mark> #A	1.0	-	1.0	1.0	1.0	-	±1.0	-	-

#A For 3D building finite element models, the load combinations inherently include the effects of differential (elastic, creep, shrinkage) axial shortening. For 2D floor plate models on the other hand, these load combinations shall be appended with a 30-year differential (elastic, creep, shrinkage) axial shortening load case based on a 10-day per floor staged construction analysis of the load combination case 1.4DL+1.4SDL, 1.2DL+1.2SDL or 1.0DL+1.0SDL as appropriate. Calculation of the elastic, creep and shrinkage components of the axial shortening shall be based on cl.3.1.4 EC2.

#B Note that it is ensured that the construction load combination is less onerous than ULS 01.

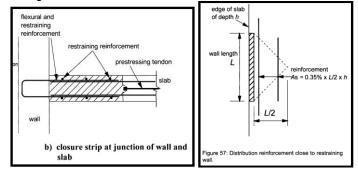
#C Note that the load combination case $1.4DL+1.4SDL\pm1.0NHL+HYP$ need not be applied if it is deemed to be always less onerous than $1.2DL+1.2SDL+1.2LL\pm1.0NHL+HYP$. This will be the case always as long as $[DL+SDL]/[DL+SDL+LL] \leq 0.85$.

#D Note that for transfer storeys, the TLS load combination case only considers the self-weight of the particular storey (and not the self-weight from any upper storey) in its dead load case, DL.

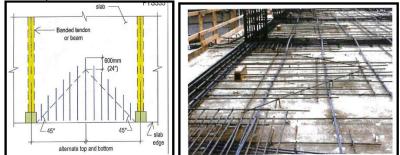
Load Combo	Description	Load Factor							
		ΡΤ	НҮР	DL	SDL	LL	EQx	EQY	EQz
	Ultimate Limit State (ULS)								
EQ ULS01	1.0DL+1.0SDL+ <i>ψ2</i> LL±1.0EQx+ <mark>HYP</mark> 1.0DL+1.0SDL+ <i>ψ2</i> LL±1.0EQy+ <mark>HYP</mark>	-	1.0	1.0	1.0	<i>Ψ2i</i>	±1.0	-	-
		_	1.0	1.0	1.0	<i>Ψ2i</i>	-	±1.0	-
EQ ULS02	$\begin{array}{l} 1.0 \text{DL} + 1.0 \text{SDL} + \psi_2 \text{LL} + \begin{array}{l} \text{HYP} \\ \pm 1.0 \text{EQ}_{x\pm} 0.3 \text{EQ}_{y\pm} 0.3 \text{EQ}_{z} \\ 1.0 \text{DL} + 1.0 \text{SDL} + \psi_2 \text{LL} + \begin{array}{l} \text{HYP} \\ \pm 0.3 \text{EQ}_{x\pm} 1.0 \text{EQ}_{y\pm} 0.3 \text{EQ}_{z} \\ 1.0 \text{DL} + 1.0 \text{SDL} + \psi_2 \text{LL} + \begin{array}{l} \text{HYP} \\ \pm 0.3 \text{EQ}_{x\pm} 0.3 \text{EQ}_{y\pm} 1.0 \text{EQ}_{z} \end{array}$	Ι	1.0	1.0	1.0	<i>Ψ2i</i>	±1.0	±0.3	±0.3
		Ι	1.0	1.0	1.0	<i>Ψ2i</i>	±0.3	±1.0	±0.3
		-	1.0	1.0	1.0	<i>Ψ2i</i>	±0.3	±0.3	±1.0

	Serviceability Limit State (SLS)								
EQ SLS01	1.0DL+1.0SDL+ <i>\u03c82</i> LL±1.0EQx+ <mark>PT</mark> #A 1.0DL+1.0SDL+ <i>\u03c82</i> LL±1.0EQy+ PT #A	1.0	Ι	1.0	1.0	<i>Ψ2i</i>	±1.0	_	-
		1.0	-	1.0	1.0	<i>Ψ2i</i>	-	±1.0	-
EQ SLS02	$\begin{array}{c} 1.0 \text{DL} + 1.0 \text{SDL} + \psi_2 \text{LL} + \begin{array}{c} \text{PT} \\ \pm 1.0 \text{EQx} \pm 0.3 \text{EQy} \pm 0.3 \text{EQz} & ^{\#\text{A}} \\ 1.0 \text{DL} + 1.0 \text{SDL} + \psi_2 \text{LL} + \begin{array}{c} \text{PT} \\ \pm 0.3 \text{EQx} \pm 1.0 \text{EQy} \pm 0.3 \text{EQz} & ^{\#\text{A}} \\ 1.0 \text{DL} + 1.0 \text{SDL} + \psi_2 \text{LL} + \begin{array}{c} \text{PT} \\ \pm 0.3 \text{EQx} \pm 0.3 \text{EQy} \pm 1.0 \text{EQz} & ^{\#\text{A}} \end{array}$	1.0	-	1.0	1.0	<i>Ψ2i</i>	±1.0	±0.3	±0.3
		1.0	_	1.0	1.0	<i>Ψ2i</i>	±0.3	±1.0	±0.3
		1.0	_	1.0	1.0	Ψ2i	±0.3	±0.3	±1.0

#A Note that the lateral EQ loads in the EQ SLS combination cases here are **not** enhanced by the adopted behaviour factor, q as per cl.4.3.4 BS EN1998-1 as these EQ SLS combinations are required for PT SLS design and also represent the foundation load combination cases. The evaluation of EQ deflections should be based on an amplified (by the factor q) deflection value instead.


Appendix E: RC or PT Design Strip Design Sections Equivalent Frame Method Integration of Effects Analysis vs FE Analysis Method Integration of Effects Analysis

RC or PT Design Strip Design Sections	RC or PT Design Strip Design Sections FE				
Equivalent Frame Method Integration of	Analysis Method Integration of Effects				
Effects Analysis	Analysis				
Does not consider the flat slab hogging moment stress concentrations, unconservatively	Does consider the flat slab hogging moment stress concentrations, conservatively				
Does not inherently consider external loads and	Does inherently consider external loads and				
tendons outside of the design strip (but still offers	tendons outside of the design strip (but still offers				
an effect), unconservatively	an effect), conservatively				


Appendix F: PT Additional Detailing Requirements

The following additional detailing requirements are required: -

- (i) the provision of minimum longitudinal steel (untensioned reinforcement) for unbonded tendon construction [cl.6.10.6 TR.43]
- (ii) the provision of flexural and restraining longitudinal and transverse steel (untensioned reinforcement) near restraining walls

- (iii) the provision of longitudinal and transverse steel (untensioned reinforcement) between tendon anchorages at flat slab edges [cl.6.13 TR.43]
 - parallel to the edge, untensioned and/or tensioned reinforcement to resist the ULS bending moment for a continuous slab spanning l_a, which is the centre to centre distance between (groups of) anchorages, evenly distributed across a width of 0.7l_a should be provided, and
 - perpendicular to the edge, untensioned reinforcement greater than 0.13%bh and 1/4 x parallel reinforcement, evenly distributed between the anchorages and extending MAX(I_a,0.7I_a+anchorage) should be provided

(iv) the provision of minimum longitudinal steel (untensioned reinforcement) at column positions for all flat slabs of at least 0.075% of the gross concrete cross-sectional area, concentrated between lines that are 1.5 times the slab depth either side of the width of the column and extending 0.2L into the span, L [cl.6.10.6 TR.43]

Appendix G: PT Dual-Cast Construction

Dual-cast construction may be simplistically simulated by: -

- (i) first, performing the first-cast PT structural analysis after
 - modelling the structure corresponding to the first-cast (e.g. a transfer storey structure with a reduced initial thickness without any upper storey superstructure walls that may provide a stiffening effect)
 - modelling the PT tendons corresponding to the first-cast only whilst <u>excluding</u> that of the second-cast (e.g. a transfer storey structure with PT tendons within the first-cast initial thickness only)
 - applying external superimposed dead and live loads corresponding to the first-cast (e.g. a transfer storey structure with external self-weight of the additional second cast included as superimposed dead load and construction live load)
 - defining a <u>standard</u> TLS load combination case, e.g. 1.0S+1.15PT
 - defining standard SLS/ULS load combination cases with PT load combination cases
- (ii) second, performing the first-cast PT design TLS/SLS/ULS checks whilst
 - recording the <u>representative</u> SLS stress at bottom face which should be positive (i.e. compressive) for the dual-cast construction method to be effective, however negative (i.e. tensile) stresses should be considered and recorded if indeed that is the case (noting that by convention, positive stress is compressive and negative stress is tensile)
- (iii) third, performing the second-cast PT structural analysis after
 - modelling the structure corresponding to the second-cast (e.g. a transfer storey structure with an increased final thickness and upper storey superstructure walls potentially providing a stiffening effect)
 - modelling the PT tendons corresponding to the second-cast only whilst <u>excluding</u> that of the first-cast (e.g. a transfer storey structure with PT tendons within the second-cast final thickness only)
 - modelling the additional first-cast PT tendon area as equivalent [factored by f_{pk}/f_y] bottom longitudinal steel (untensioned reinforcement) area for the PT design ULS bending and shear checks, although for any quantity take-off purposes, the second-cast bottom longitudinal steel (untensioned reinforcement) quantity should then be factored down and for completion, the second-cast PT tendon quantity factored up to include the first-cast PT tendon quantity
 - applying external dead, superimposed dead and live loads corresponding to the second-cast (e.g. a transfer storey structure with external dead, superimposed dead and live loads from the particular storey and all upper storeys)
 - defining a <u>non-standard</u> TLS load combination case to exclude the beneficial effect (of counteracting the prestressing equivalent load) of the self-weight of the second-cast structure section which can no longer be considered as it has already been considered in the bending of the first-cast structure section, e.g. 0.0S+1.15^{PT}, noting that all <u>transfer storeys</u> should thus be designated as such so that the dead load (self-weight of the structure) case, S within the TLS load combination case (thus defined when the type of load combination case is designated by the user as <u>initial</u>) will refer to the self-weight of only the particular storey (and not the self-weight from any upper storey)
 - defining standard SLS/ULS load combination cases with PT load combination cases, noting that the effect
 of the self-weight of the second-cast structure section can conservatively be double-counted, the effect
 being marginal in practice as it would be resisted by the full second-cast structure section elastic section
 modulus Z_{t/b} and would form only a fraction of the full SLS load combination cases whilst ensuring that the
 correct external load effects are maintained for presentation purposes and other PT design SLS/ULS checks
- (iv) fourth, performing the second-cast PT design TLS/SLS/ULS checks whilst
 - subtracting the recorded first-cast $\underline{\text{representative}}$ SLS stress at bottom face from the criteria f_{min}/f_{min} and f_{max}/f_{max}

Appendix H: PT Multi-Stage Stressing

Multi-stage stressing may be simplistically simulated by: -

- (i) first,
 - modelling the structure corresponding to the first stressing stage, STG(i=1) (e.g. a transfer storey structure with a reduced total number of upper storeys above the transfer storey)
 - modelling the PT tendons corresponding to the first stressing stage, STG(i=1) (e.g. a transfer storey structure with a reduced total number of PT tendons)
 - applying external superimposed dead and live loads corresponding to the first stressing stage, STG(i=1) (e.g. a transfer storey structure with external loads consistent with the reduced total number of upper storeys above the transfer storey)
 - defining a <u>standard</u> TLS load combination case, e.g. 1.0S+1.15PT, noting that all <u>transfer storeys</u> should thus be designated as such so that the dead load (self-weight of the structure) case, S within the TLS load combination case (thus defined when the type of load combination case is designated by the user as <u>initial</u>) will refer to the self-weight of only the particular storey (and not the self-weight from any upper storey)
 - defining standard SLS/ULS load combination cases with PT load combination cases
 - performing the PT structural analysis
 - performing the PT design TLS/SLS/ULS checks corresponding to the first stressing stage, STG(i=1)
- (ii) second,
 - modelling the structure corresponding to the second stressing stage, STG(i=2) (e.g. a transfer storey structure with an increased total number of upper storeys above the transfer storey)
 - modelling the PT tendons corresponding to the second stressing stage, STG(i=2) (e.g. a transfer storey structure with an increased total number of PT tendons)
 - applying external superimposed dead and live loads corresponding to the second stressing stage, STG(i=2) (e.g. a transfer storey structure with external loads consistent with the increased total number of upper storeys above the transfer storey)
 - defining a <u>non-standard</u> TLS load combination case to include the effects of the self-weight from the upper storeys corresponding to the preceding stressing stage (pre-calculated and applied as superimposed dead load), e.g. 1.0S+1.0SUPPER STOREYS OF STG(i=1)+1.15PT
 - defining standard SLS/ULS load combination cases with PT load combination cases
 - performing the PT structural analysis
 - performing the PT design TLS/SLS/ULS checks corresponding to the second stressing stage, STG(i=2)
- (iii) third and thereafter, repeating the second step corresponding to the third and thereafter stressing stages, STG(i=3, 4, 5, etc.)