| CON | ICHI TING | | 0 1 1 | . | | Job No. | Sheet | No. | | Rev. | |--|--|--|--
---|---|--|--|--|--|--| | | ISULTING
I N E E R S | | | on Sheet | | jXXX | | - | 1 | | | | T | | , J | | | | | | - | | | | | | | | | Member/Location Drg. Ref. | n | | | | | Job Title | | _ | nforced Cor | ncrete Beam | i BS8110, | ı · | - Data | - | | Chd | | Member D | Design - RC | Beam | I | | | Made by X | C Date | 10 | 6/1/2024 | | | | <u> </u> | | | | | | | | | <u>BS8110</u> | | Effects F | rom Struct | ural Analy | /SIS | | Do not adopt | t code equiva | lence | • | | | | D! | :-I f | (1 | | | 0 16 | | | | | 014 | | | ial force, F | - | e and comp |). +ve) (ens | sure < 0.1f | _{cu} b _w n) | | | kN | ОК | | | ear force, V | - | | | | | | 170 | | | | | nding mom | | | | | | 13 | | kNm | | | Design tor | rsion mome | nt, T | | | | | | 0 | kNm | | | | | | | | | | | | | | | Material | Properties | _ | | | | istic strengt | | | $ f_c'(f_{cu} \leq 7) $ | 5 or 105N _/ | 35 ▼ | 28 | | N/mm ² | OK | | | ngth of long | | | | | Higher ▼ | 500 | | N/mm ² | | | Yield strer | ngth of shea | r and torsi | on link stee | el, f _{yv} | | Higher ▼ | 500 | • | N/mm ² | | | | | | | | | | | | | | | Section D | Dimensions | 5 | Span (effe | ective width | , deflection | , long'l she | ar and deep | beam cald | cs) | 10. | 000 | m | | | Available l | beam spacii | ng | | | | | 1. | 000 | m | | | | width calcs, | | cing for inte | erior beams | ; half for e | dge beam | s) | | | | | | tion type an | | | | | t - continuou | | • | | | | | ype for bend | | | ort conditio | | | | . de | l | hear calc | | | 1.0 for no m | | | | | | | .00 | , | ОК | | . ta e. e p _D (- | T | | | | | | - | | | | | | | | | | | | | | | | | | | Sect | ion Type ar | nd Support | Condition (| Ontion Sel | ection | | | | | | Do | | | nd Support | Condition (| | | Rea | m | | | Support | | wnstand Be | eam | | | l | Jpstand | | | Dofl'n | | Support | Effect | wnstand Be
Slab | eam
Type | Defl'n | Support | l
Effect | Jpstand
Slat |) | Туре | Defl'n | | S/S | Effect
Sag | wnstand Be
Slab
Precast | Type
Rect-s/s | Defl'n
Yes | Support
S/S | Effect
Sag | Jpstand
Slat
Preca |)
ist | Type
Rect-s/s | Yes | | S/S
S/S | Effect
Sag
Sag | wnstand Be
Slab
Precast
Insitu | Type
Rect-s/s
T/L-s/s | Defl'n
Yes
Yes | Support
S/S
S/S | Effect
Sag
Sag | Jpstand
Slat
Preca
Insit | st
u | Type Rect-s/s Rect-s/s | Yes
Yes | | S/S
S/S
Cont. | Effect
Sag
Sag
Sag | wnstand Be
Slab
Precast
Insitu
Precast | Rect-s/s T/L-s/s Rect-cont. | Defl'n
Yes
Yes
Yes | Support S/S S/S Cont. | Effect
Sag
Sag
Sag | Jpstand
Slat
Preca
Insit
Preca | o
ist
iu
ist | Type Rect-s/s Rect-s/s Rect-cont. | Yes
Yes
Yes | | S/S
S/S
Cont.
Cont. | Effect
Sag
Sag
Sag
Sag | wnstand Be
Slab
Precast
Insitu
Precast
Insitu | Type Rect-s/s T/L-s/s Rect-cont. T/L-cont. | Defl'n
Yes
Yes
Yes
Yes | Support S/S S/S Cont. Cont. | Effect
Sag
Sag
Sag
Sag
Sag | Jpstand
Slat
Preca
Insit
Preca
Insit | o
est
eu
est
eu | Type Rect-s/s Rect-s/s Rect-cont. Rect-cont. | Yes
Yes
Yes
Yes | | S/S
S/S
Cont.
Cont. | Effect
Sag
Sag
Sag
Sag
Hog | wnstand Be
Slab
Precast
Insitu
Precast
Insitu
Precast | Rect-s/s T/L-s/s Rect-cont. T/L-cont. Rect-cont. | Defl'n
Yes
Yes
Yes
Yes
N/A | Support S/S S/S Cont. Cont. Cont. | Effect Sag Sag Sag Sag Sag Hog | Jpstand
Slat
Preca
Insit
Preca
Insit
Preca | est
est
est
eu
est | Type Rect-s/s Rect-cont. Rect-cont. Rect-cont. | Yes
Yes
Yes
Yes
N/A | | S/S
S/S
Cont.
Cont.
Cont. | Effect
Sag
Sag
Sag
Sag
Hog
Hog | vnstand Be
Slab
Precast
Insitu
Precast
Insitu
Precast
Insitu | Rect-s/s T/L-s/s Rect-cont. T/L-cont. Rect-cont. Rect-cont. | Defl'n Yes Yes Yes Yes N/A N/A | Support S/S S/S Cont. Cont. Cont. Cont. | Effect Sag Sag Sag Sag Sag Hog | Jpstand
Slat
Preca
Insit
Preca
Insit
Preca
Insit | est
est
est
est
est | Type Rect-s/s Rect-cont. Rect-cont. Rect-cont. T/L-cont. | Yes
Yes
Yes
Yes
N/A
N/A | | S/S
S/S
Cont.
Cont.
Cont.
Cont. | Effect Sag Sag Sag Sag Hog Hog | NISTAND BESTAND Slab Precast Insitu Precast Insitu Precast Insitu Precast Insitu Precast | Type Rect-s/s T/L-s/s Rect-cont. T/L-cont. Rect-cont. Rect-cont. Rect-cont. | Defl'n Yes Yes Yes Yes N/A N/A Yes | Support
S/S S/S Cont. Cont. Cont. Cont. Cont. | Effect Sag Sag Sag Sag Sag Hog | Jpstand
Slat
Preca
Insit
Preca
Insit
Preca
Insit | est
est
est
est
est
est | Type Rect-s/s Rect-cont. Rect-cont. Rect-cont. T/L-cont. Rect-cant. | Yes Yes Yes Yes N/A N/A Yes | | S/S
S/S
Cont.
Cont.
Cont. | Effect
Sag
Sag
Sag
Sag
Hog
Hog | vnstand Be
Slab
Precast
Insitu
Precast
Insitu
Precast
Insitu | Rect-s/s T/L-s/s Rect-cont. T/L-cont. Rect-cont. Rect-cont. | Defl'n Yes Yes Yes Yes N/A N/A Yes | Support S/S S/S Cont. Cont. Cont. Cont. | Effect Sag Sag Sag Sag Sag Hog | Jpstand
Slat
Preca
Insit
Preca
Insit
Preca
Insit | est
est
est
est
est
est | Type Rect-s/s Rect-cont. Rect-cont. Rect-cont. T/L-cont. | Yes
Yes
Yes
Yes
N/A
N/A | | S/S S/S Cont. Cont. Cont. Cont. Cont. Cant. Cant. | Effect Sag Sag Sag Sag Hog Hog Hog | vnstand Be
Slab
Precast
Insitu
Precast
Insitu
Precast
Insitu
Insitu | Type Rect-s/s T/L-s/s Rect-cont. T/L-cont. Rect-cont. Rect-cont. Rect-cont. Rect-cont. | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes | Support S/S S/S Cont. Cont. Cont. Cont. Cont. Cont. Cont. | Effect Sag Sag Sag Sag Hog Hog Hog | Jpstand
Slat
Preca
Insit
Preca
Insit
Preca
Insit | est
est
est
est
est
est | Type Rect-s/s Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont. Cont. Cont. Cant. Cant. Cant. | Effect Sag Sag Sag Hog Hog Hog Hog | NISTAND BESTANDERS SIAB PRECAST INSITU PRECAST INSITU PRECAST INSITU PRECAST INSITU Udes insitu | Type Rect-s/s T/L-s/s Rect-cont. T/L-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes Yes | Support S/S S/S Cont. Cont. Cont. Cont. Cant. Cant. Cant. | Effect Sag Sag Sag Sag Hog Hog Hog | Jpstand Slat Preca Insit Preca Insit Preca Insit Preca Insit | ost
ost
ost
ost
ost
ou | Type Rect-s/s Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. T/L-cant. | Yes Yes Yes Yes N/A N/A Yes | | S/S S/S Cont. Cont. Cont. Cont. Cant. Cant. Overall de | Effect Sag Sag Sag Hog Hog Hog Hog Hog | NISTAND BESTANDERS SIAB Precast Insitu Precast Insitu Precast Insitu Precast Insitu Undes insitu Ending flan | Type Rect-s/s T/L-s/s Rect-cont. T/L-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. slab thks; ged beam, | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes Yes | Support S/S S/S Cont. Cont. Cont. Cont. Cant. Cant. Cant. | Effect Sag Sag Sag Sag Hog Hog Hog | Jpstand Slat Preca Insit Preca Insit Preca Insit Preca Insit | ost
ost
ost
ost
ost
ou | Type Rect-s/s Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont. Cont. Cont. Cant. Cant. Overall de | Effect Sag Sag Sag Hog Hog Hog Hog | NISTAND BESTANDERS SIAB Precast Insitu Precast Insitu Precast Insitu Precast Insitu Undes insitu Ending flan | Type Rect-s/s T/L-s/s Rect-cont. T/L-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. slab thks; ged beam, | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes Yes | Support S/S S/S Cont. Cont. Cont. Cont. Cant. Cant. Cant. | Effect Sag Sag Sag Sag Hog Hog Hog | Jpstand Slat Preca Insit Preca Insit Preca Insit | est
eu
est
eu
est
eu
est
eu
est
eu | Type Rect-s/s Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. T/L-cant. | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont. Cont. Cont. Cant. Cant. Overall de | Effect Sag Sag Sag Hog Hog Hog Hog Hog | Slab Precast Insitu Precast Insitu Precast Insitu Precast Insitu Precast Insitu Predast Insitu Precast Insitu Precast Insitu | Rect-s/s T/L-s/s Rect-cont. T/L-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. Slab thks; ged beam, h (flanged) | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes Iongitudina , b _w | Support S/S S/S Cont. Cont. Cont. Cont. Cant. Cant. Cant. I shear calc | Effect Sag Sag Sag Hog Hog Hog Hog Sthks; spar | Jpstand Slat Preca Insit Preca Insit Preca Insit Preca Insit | est
est
est
est
est
est
est
est
est
est | Type Rect-s/s Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. mm mm | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont. Cont. Cont. Cant. Cant. Overall de Depth of f Width (red Cover to a | Effect Sag Sag Sag Hog Hog Hog Hog Gepth, h (incliftange, h _f (booten) | Slab Precast Insitu Precast Insitu Precast Insitu Precast Insitu Undes insitu Undes insitu Under ing fland Under web widtl Undent, cove | Rect-s/s T/L-s/s Rect-cont. T/L-cont. Rect-cont. Rect-cant. Rect-cant. Rect-cant. rect-cant. ged beam, h (flanged) r (usually 3 | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes Iongitudina , b _w 55 (C35) or | Support S/S S/S Cont. Cont. Cont. Cont. Cant. Cant. I shear calc | Effect Sag Sag Sag Hog Hog Hog Hog Sthks; spar | Jpstand Slat Preca Insit Preca Insit Preca Insit Preca Insit | onst
u u u u u u u u u u u u u u u u u u u | Type Rect-s/s Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. mm mm | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont. Cont. Cant. Cant. Overall de Depth of f Width (rec Cover to a | Sag Sag Sag Hog Hog Hog Hog ctangular) o | Insitu Precast ending flan r web widtl ment, cove steel (due to | Rect-s/s T/L-s/s Rect-cont. T/L-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. ged beam, (flanged) (usually 3) to transverse | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes excludes pro longitudina bw 15 (C35) or 15 se steel layer | Support S/S S/S Cont. Cont. Cont. Cant. Cant. I shear calc 30 (C40) irer(s)), cover | Effect Sag Sag Sag Sag Hog Hog Hog Sthks; spar | Jpstand Slat Preca Insit Preca Insit Preca Insit | 20 | Type Rect-s/s Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. mm mm mm | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont. Cont. Cont. Cant. Cant. Overall de Depth of f Width (red Cover to a Add cover | Sag Sag Sag Sag Hog Hog Hog Hog Included the composition of compos | Insitu Precast Insitu Precast Insitu Precast Insitu Precast Insitu Precast Insitu Precast Insitu reding flan r web widt ment, cove steel (due to | Rect-s/s T/L-s/s Rect-cont. T/L-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. reged beam, fin (flanged) fr (usually 3 to transvers (due to transvers) | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes excludes pro longitudina bw 55 (C35) or is se steel layer nsverse stee | Support S/S S/S Cont. Cont. Cont. Cant. Cant. l shear calc 30 (C40) in er(s)), cove | Effect Sag Sag Sag Sag Hog Hog Hog Hog cs) | Jpstand Slat Preca Insit Preca Insit Preca Insit Preca Insit | 200 | Type Rect-s/s Rect-cont. Rect-cont. T/L-cont. T/L-cant. mm mm mm mm mm | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont. Cont. Cont. Cant. Cant. Cant. Overall de Depth of f Width (red Cover to a Add cover Add cover | Sag Sag Sag Sag Hog Hog Hog Hog Included the same of t | Precast Insitu ending flan r web widtl ment, cove steel (due to | Rect-s/s T/L-s/s Rect-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. Rect-cant. (ged beam, (flanged)) (r (usually 3) (to transvers) (due to transvers) (due to transvers) | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes excludes pro longitudina bw 15 (C35) or 15 se steel layer rever = MAX(\phi_0) | Support S/S S/S Cont. Cont. Cont. Cant. Cant. I shear calc (C40) irer(s)), covered layer(s) | Effect Sag Sag Sag Sag Hog Hog Hog Hog cs) hternal; 40 er _{add,t} , cover _{add,t} over _{add,t}) - | Jpstand Slat Preca Insit Preca Insit Preca Insit Preca Insit | 0 | Type Rect-s/s Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. mm mm mm mm mm mm | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont. Cont. Cont. Cant. Cant. Cant. Overall de Depth of f Width (red Cover to a Add cover Add cover | Sag Sag Sag Sag Hog Hog Hog Hog Included the composition of compos | Precast Insitu ending flan r web widtl ment, cove steel (due to | Rect-s/s T/L-s/s Rect-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. Rect-cant. (ged beam, (flanged)) (r (usually 3) (to transvers) (due to transvers) (due to transvers) | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes excludes pro longitudina bw 15 (C35) or 15 se steel layer rever = MAX(\phi_0) | Support S/S S/S Cont. Cont. Cont. Cant. Cant. I shear calc (C40) irer(s)), covered layer(s) | Effect Sag Sag Sag Sag Hog Hog Hog Hog cs) hternal; 40 er _{add,t} , cover _{add,t} over _{add,t}) - | Jpstand Slat Preca Insit Preca Insit Preca Insit Preca Insit | 0 | Type Rect-s/s Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. mm mm mm mm mm | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont. Cont. Cont. Cant. Cant. Overall de Depth of f Width (red Cover to a Add cover Add cover Effective of | Sag Sag Sag Sag Hog Hog Hog Hog In the compression of | Precast Insitu I | Rect-s/s T/L-s/s Rect-cont. Rect-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. In (flanged) In (usually 3) Ito transvers In (due to | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes excludes pro longitudina bw 15 (C35) or 15 se steel layer rever = MAX(\phi_0) | Support S/S S/S Cont. Cont. Cont. Cant. Cant. I shear calc (C40) irer(s)), covered layer(s) | Effect Sag Sag Sag Sag Hog Hog Hog Hog cs) hternal; 40 er _{add,t} , cover _{add,t} over _{add,t}) - | Jpstand Slat Preca Insit Preca Insit Preca Insit Preca Insit | 0 | Type Rect-s/s Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. mm mm mm mm mm mm | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont. Cont. Cont. Cant. Cant. Overall de Depth of f Width (red Cover to a Add cover Add cover Effective of | Sag Sag Sag Sag Hog Hog Hog Hog Included the same of t | Precast Insitu I | Rect-s/s T/L-s/s Rect-cont. Rect-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. rect-cant. ged beam, frect-cant. (flanged) frect-cant. (due to transverse) frect-cant. frect-cant. | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes excludes pro longitudina bw 15 (C35) or 15 se steel layer rever = MAX(\phi_0) | Support S/S S/S Cont. Cont. Cont. Cant. Cant. I shear calc (C40) irer(s)), covered layer(s) | Effect Sag
Sag Sag Sag Hog Hog Hog Hog cs) hternal; 40 er _{add,t} , cover _{add,t} over _{add,t}) - | Jpstand Slat Preca Insit Preca Insit Preca Insit Preca Insit | 0 | Type Rect-s/s Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. mm mm mm mm mm mm | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont. Cont. Cont. Cant. Cant. Overall de Depth of f Width (rec Cover to a Add cover Add cover Effective of Effective of | Effect Sag Sag Sag Sag Hog Hog Hog Hog Gepth, h (incleating head) Etangular) of the tension of the compression compressi | Insitu Precast Insitu Precast Insitu Precast Insitu Precast Insitu Precast Insitu Precast Insitu Ins | Type Rect-s/s T/L-s/s Rect-cont. T/L-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. reged beam, frequency (flanged) frequency (due to transversed) | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes excludes pro longitudina bw 15 (C35) or 15 se steel layer rever = MAX(\phi_0) | Support S/S S/S Cont. Cont. Cont. Cant. Cant. I shear calc (C40) irer(s)), covered layer(s) | Effect Sag Sag Sag Sag Hog Hog Hog Hog cs) hternal; 40 er _{add,t} , cover _{add,t} over _{add,t}) - | Jpstand Slat Preca Insit Preca Insit Preca Insit Preca Insit | 0 | Type Rect-s/s Rect-cont. Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. mm mm mm mm mm mm mm mm mm | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont. Cont. Cont. Cant. Cant. Overall de Depth of f Width (red Add cover Add cover Effective of Effective of Effective of Longitud | Sag Sag Sag Sag Hog Hog Hog Hog Hog In the compression of compress | Precast Insitu Insi | Rect-s/s T/L-s/s Rect-cont. Rect-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. Rect-cant. (due to transvers (due to transvers (due to transvers) | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes excludes pro longitudina bw 15 (C35) or 15 se steel layer rever = MAX(\phi_0) | Support S/S S/S Cont. Cont. Cont. Cant. Cant. I shear calc (C40) irer(s)), covered layer(s) | Effect Sag Sag Sag Sag Hog Hog Hog Hog cs) hternal; 40 er _{add,t} , cover _{add,t} over _{add,t}) - | Jpstand Slat Preca Insit Preca Insit Preca Insit | 20 | Type Rect-s/s Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. mm mm mm mm mm mm mm | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont. Cont. Cont. Cant. Cant. Overall de Depth of f Width (red Cover to a Add cover Add cover Effective of Effective of Longitud Tension st | Sag Sag Sag Sag Hog Hog Hog Hog Hog Stangular) of the tension t | Precast Insitu Undes insitu Ending flan In web widtl Insitu Insit | Rect-s/s T/L-s/s Rect-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. Rect-cant. (due to transverse t | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes excludes pro longitudina bw 55 (C35) or 1 se steel layer exer - MAX(ϕ_{ij}) sover + MAX | Support S/S S/S Cont. Cont. Cont. Cant. Cant. I shear calc (C40) irer(s)), covered layer(s) | Effect Sag Sag Sag Sag Hog Hog Hog Hog cs) hternal; 40 er _{add,t} , cover _{add,t} over _{add,t}) - | Jpstand Slat Preca Insit Preca Insit Preca Insit Preca Insit Insit 3 32 | 0 | Type Rect-s/s Rect-s/s Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. mm m | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont. Cont. Cont. Cont. Cant. Cant. Cant. Overall de Depth of f Width (red Cover to a Add cover Add cover Effective of Effective of Longitud Tension st Tension st | Sag Sag Sag Sag Hog Hog Hog Hog Gepth, h (incleating to tension to compression to compression to compression to tension to tension to tension to tension to tension to compression to tension to tension to tension to compression to tension to tension to compression to tension to tension to tension to tension to tension to compression to tension tens | Precast Insitu Ins | Type Rect-s/s T/L-s/s Rect-cont. T/L-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. I (langed) I (usually 3 to transvers (due to transvers d = h - cov steel, d' = c Details meter, ϕ_t mber, n_t $cov = n_t.\pi.\phi_t$ | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes longitudina bw 5 (C35) or se steel layer rer - MAX(\phi) cover + MAX | Support S/S S/S Cont. Cont. Cont. Cant. Cant. I shear calc Cant. Cant. (C40) in cer(s)), cover cer(s), | Effect Sag Sag Sag Sag Hog Hog Hog Hog cs) hternal; 40 er _{add,t} , cover _{add,t} over _{add,t}) - | Jpstand Slat Preca Insit Preca Insit Preca Insit | 200 | Type Rect-s/s Rect-s/s Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. mm m | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont. Cont. Cont. Cont. Cant. Cant. Cant. Overall de Depth of f Width (red Add cover Add cover Effective of Effective of Longitud Tension st Tension st Compress | Sag Sag Sag Sag Hog Hog Hog Hog Hog In the tension of | Precast Insitu ending flam r web widt ment, cove steel (due to sion steel) sion steel, mpression steel, mpression steel ement dian ement num ovided, A _{s,p} nforcement | Type Rect-s/s T/L-s/s Rect-cont. Rect-cont. Rect-cont. Rect-cont. Rect-cant. Slab thks; ged beam, h (flanged) r (usually 3 to transvers (due to tran d = h - cov steel, d' = c Details meter, ϕ_t hober, n_t rov = n_t . π . ϕ_t t diameter, | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes longitudina bw 55 (C35) or se steel laye rer - MAX(\phi_0) cover + MAX | Support S/S S/S Cont. Cont. Cont. Cant. Cant. I shear calc Cant. Cant. (C40) in cer(s)), cover cer(s), | Effect Sag Sag Sag Sag Hog Hog Hog Hog cs) hternal; 40 er _{add,t} , cover _{add,t} over _{add,t}) - | Jpstand Slat Preca Insit Preca Insit Preca Insit Preca Insit Insit 3 32 | 20000000000000000000000000000000000000 | Type Rect-s/s Rect-s/s Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. mm m | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont. Cont. Cont. Cont. Cant. Cant. Overall de Depth of f Width (red Cover to a Add cover Add cover Effective o Effective o Effective o Effective o Compress Compress Compress | Sag Sag Sag Sag Hog Hog Hog Hog Hog Stangular) of the tension tension of the t | Precast Insitu Precast Insitu Precast Insitu Precast Insitu Precast Insitu Precast Insitu Undes insitu Under insitu Undes insitu Under insitu Undes | Rect-s/s T/L-s/s Rect-cont. T/L-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. Rect-cant. I (flanged) I (usually 3 (| Defl'n Yes Yes Yes Yes N/A N/A Yes Yes excludes pro longitudina bw 5 (C35) or se steel layer exer - MAX(ϕ_{li}) cover + MAX | Support S/S S/S Cont. Cont. Cont. Cant. Cant. I shear calc Cant. Cant. (C40) in cer(s)), cover cer(s), | Effect Sag Sag Sag Sag Hog Hog Hog Hog cs) hternal; 40 er _{add,t} , cover _{add,t} over _{add,t}) - | Jpstand Slat Preca Insit Preca Insit Preca Insit | 0 | Rect-s/s Rect-cont. Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. mm m | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont. Cont. Cont. Cont. Cont. Cant. Cant. Cant. Overall de Depth of f Width (rec Cover to a Add cover Effective of Effective of Effective of Congitud Tension st Tension st Compress Compress Compress | Sag Sag Sag Sag Hog Hog Hog Hog Gepth, h (incleating to tension to compression to compression to tension te | Precast Insitu Undes Unde | Type Rect-s/s T/L-s/s Rect-cont. T/L-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. I (langed) I (usually 3 to transvers (due to transvers (due to transvers I (all (a | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes longitudina bw 5 (C35) or se steel layer se steel layer cover + MAX $ a ^{2}/4$ $ a _{c} (where a)$ $ a _{c} (m_{c}.\pi.\phi_{c}^{2}/4)$ | Support S/S S/S Cont. Cont. Cont. Cant. Cant. I shear calc Cant. Cant. (C40) in cer(s)), cover cer(s), | Effect Sag Sag Sag Sag Hog Hog Hog Hog cs) hternal; 40 er _{add,t} , cover _{add,t} over _{add,t}) - | Jpstand Slat Preca Insit Preca Insit Preca Insit | 0 | Rect-s/s Rect-s/s Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. mm m | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont. Cont. Cont. Cont. Cont. Cant. Cant. Cant. Overall de Depth of f Width (red Add cover Add cover Effective of Effective of Effective of Compress Compress Compress Number o | Sag Sag Sag Sag Hog Hog Hog Hog Hog Sal Hog Hog Hog Hog Sag Hog Sag Hog Hog Hog Hog Hog Hog Hog Sag Hog Hog Hog Hog Hog Hog Hog Hog Hog Ho | Precast Insitu udes insitu ending flan r web widt ment, cove steel (due to sion steel) sion steel, mpression steel ement dian ement num ovided, A _{s,p} inforcement inforcement ea provided ension steel ension steel ension steel | Type Rect-s/s T/L-s/s Rect-cont. T/L-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. slab thks; ged beam, h (flanged) r (usually 3 to transvers (due to transvers deel, d' = cont continue of the continu | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes longitudina bw So (C35) or se steel layer reser - MAX(\phi_1) cover + MAX | Support S/S S/S Cont. Cont. Cont. Cant. Cant. I shear calc Cant. Cant. (C40) in cer(s)), cover cer(s), | Effect Sag Sag Sag Sag Hog Hog Hog Hog cs) hternal; 40 er _{add,t} , cover _{add,t} over _{add,t}) - | Jpstand Slat Preca Insit Preca Insit Preca Insit | 0 | Rect-s/s Rect-cont. Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. mm m | Yes Yes Yes Yes N/A N/A Yes Yes OK | | S/S S/S Cont. Cont | Effect Sag Sag Sag Sag Hog Hog Hog Hog Hog Septh, h (inclination of the compression th | Precast Insitu Insitu Insitu Insitu Insitu Insitu Insitu Insitu Insit | Type Rect-s/s T/L-s/s Rect-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. Slab thks; ged beam, h (flanged) r (usually 3 to transvers (due tr | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes excludes pro longitudina bw 55 (C35) or 3 se steel laye reser - MAX(ϕ_{li}) cover + MAX ϕ_{li} | Support S/S S/S Cont. Cont. Cont. Cant. Cant. I shear calc Cant. Cant. (C40) in cer(s)), cover cer(s), | Effect Sag Sag Sag Sag Hog Hog Hog Hog cs) hternal; 40 er _{add,t} , cover _{add,t} over _{add,t}) - | Jpstand Slat Preca Insit Preca Insit Preca Insit | 0000
2500
0000
2500
0000
2500
0000
2500
0000
2500
0000
2500
0000
2500
0000
2500
0000
0000
0000
0000
0000
0000
0000
0000 | Rect-s/s Rect-s/s Rect-cont.
Rect-cont. T/L-cont. Rect-cant. T/L-cant. mm m | Yes Yes Yes Yes N/A N/A Yes Yes | | S/S S/S Cont. Cont | Sag Sag Sag Hog Hog Hog Hog Gepth, h (incleating to tension to compressed to tension to compressed the tension to tension steel reinforce area for layers of the | r web width ment, cover steel (due to sion steel (sion steel (moreover the sion | Type Rect-s/s T/L-s/s Rect-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. Rect-cant. I (langed) I (usually 3 4 (u | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes excludes pro longitudina bw 15 (C35) or 15 se steel layer reverse steel ever - MAX(bill sover + MAX cover + MAX cover + MAX anc nc.m.bc²/4 25mm)) ers,comp | Support S/S S/S Cont. Cont. Cont. Cant. Cant. Cant. I shear calc 30 (C40) ir er(s)), cove el layer(s)) ink, $\phi_{link,t}$, cove ((ϕ_{link} , $\phi_{link,t}$) applicable) | Effect Sag Sag Sag Sag Hog Hog Hog Hog cs) hternal; 40 er _{add,t} , cover _{add,t} over _{add,t}) - | Jpstand Slat Preca Insit Preca Insit Preca Insit | 0 | Rect-s/s Rect-s/s Rect-cont. Rect-cont. Rect-cont. T/L-cont. mm m | Yes Yes Yes Yes N/A N/A Yes Yes OK | | S/S S/S Cont. Cont | Effect Sag Sag Sag Sag Hog Hog Hog Hog Hog Septh, h (inclination of the compression th | r web width ment, cover steel (due to sion steel (sion steel (moreover the sion | Type Rect-s/s T/L-s/s Rect-cont. Rect-cont. Rect-cont. Rect-cant. Rect-cant. Rect-cant. I (langed) I (usually 3 4 (u | Defl'n Yes Yes Yes Yes N/A N/A Yes Yes excludes pro longitudina bw 15 (C35) or 15 se steel layer reverse steel ever - MAX(bill sover + MAX cover + MAX cover + MAX anc nc.m.bc²/4 25mm)) ers,comp | Support S/S S/S Cont. Cont. Cont. Cant. Cant. Cant. I shear calc 30 (C40) ir er(s)), cove el layer(s)) ink, $\phi_{link,t}$, cove ((ϕ_{link} , $\phi_{link,t}$) applicable) | Effect Sag Sag Sag Sag Hog Hog Hog Hog cs) hternal; 40 er _{add,t} , cover _{add,t} over _{add,t}) - | Jpstand Slat Preca Insit Preca Insit Preca Insit | 0 | Rect-s/s Rect-s/s Rect-cont. Rect-cont. T/L-cont. Rect-cant. T/L-cant. mm m | Yes Yes Yes Yes N/A N/A Yes Yes OK | | CON | SULTING Engineerin | a Calculatio | on Choot | | Job No. | Sheet No. | | Rev. | |------------|---|--------------|------------------|--------------------------|--------------------------|-----------|--|-----------| | | NEERS Consulting | | on Sneet | | jXXX | | 2 | | | | | | | | Member/Location | | | | | ob Title | Member Design - Rei | oforcod Cor | ocroto Boan | n BCQ110 | Drg. Ref. | | | | | | esign - RC Beam | norced Cor | iciete beaii | 1 030110, | · · | Date 1 | 6/1/2024 | 1 Chd. | | ACTIDET D | csign Re Beam | | | | | 1 | 0,1,202 | BS8110 | | Shear Re | inforcement Details | | | | | | | <u> </u> | | 51 1: 1 | | | | | | | | | | | diameter, φ _{link}
f shear links in a cross | section, i.e | e. number o | f leas, n _{iss} | | 10 | mm | | | | ded by all shear links | | | - 3 | . ² /4.n | 314 | mm ² | | | | ear links, S | | , section, rigg, | DIOV 7014IIIK | , ····leg | | mm | | | | | | | | | | | | | forsion R | Reinforcement Detail | ls
 | | | | | | | | orsion lin | k diameter, $\phi_{link,t}$ | | | | | None 🔻 | mm | | | | f torsion links in a cros | s section, i | .e. number | of legs, n _{le} | $r_{a,t} = 2$ | 2 | | | | | ded by all torsion links | | | | 31 - | | mm ² | | | | rsion links, S _t | | , , | ν,ριον,ε · · · · | link,c / icg | | mm | | | | further longitudinal ste | eel A mus | 0 | 0 | 0 | | mm² | | | | | 3,0 | | | | | | | | Utilisatio | n Summary | Item | | | | UT | Remark | <u> </u> | | | | RB tens steel | | 86% | <i>7</i> 9% | 86% | OK | | | | | RB comp steel | | N/A | N/A | N/A | N/A | | | | | RB % min tens reinf. | | 10% | 20% | 20% | OK | | | | | RB % min comp reinf |
 | | | N/A | N/A | | | | | RB % max tens and o | | | | 32% | OK | | | | | FB tens steel | | | | N/A | N/A | | | | | FB comp steel | | | | N/A | N/A | | | | | FB % min tens reinf. | | | | N/A | N/A | | | | | FB % min comp reinf | | | | N/A | N/A | | | | | FB % max tens and c | | | | N/A | N/A | | | | | RB shear ultimate str | | <i>57</i> % | 77% | 77% | OK | | | | | RB shear design capa | | 42% | 96% | 96% | OK | | | | | RB torsion ultimate st | | 0% | 0% | 0% | OK | | | | | RB torsion design cap | | 0% | 0% | 0% | OK | | | | | RB shear and torsion | | <i>57</i> % | 77% | 77% | OK | | | | | RB or FB deflection re | | | | 49% | OK | | | | | Total utilisation red | • | | | 96% | ОК | | | | | Total utilisation red | | | ludina del | | ОК | | | | | Total utilisation fla | | | | N/A | N/A | | | | | Detailing requireme | _ | | | | OK | | | | | Note RB = rectangula | | B = flanged | beam: | | | | | | | % Tension reinforcem | | | | | 1.29 | % | | | | % Compression reinfo | - | |) | | N/A | % | | | | % Tension reinforcem | | | | | N/A | % | | | | % Compression reinfo | | | | | N/A | % | | | | Estimated steel reinfo | | | | n ³) | 158 | kg/m ³ | 1 | | | 7850 . $[(A_{s,prov} + A_{s,prov})]$ | | | | | | | +anc.)/S. | | | Estimated steel reinfo | | | | _ | | kg/m^3 | IStruct | | | 11000 . $[(A_{s,prov} + A_{s,p})]$ | | | | | | ٠, | _1 | | | [Note that steel quan | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | concrete, c | | units/m ³ | steel, s | | units/ton | _L
ne | | | Reinforced concrete r | | | | | 667 | units/torn | 1 | | | TREMINISTECT CONCIECTED | | [c+(csi | . rebai que | 211c).3].(D _W | -007 | umics/III | | | | Ductility of failure me | chanicm | Consider ▼ | Section | Under Re | inforced | | ОК | | | <i>'</i> | | Consider ▼ | Section | onder Re | | | | | | | 12 MUZIED | I . | | | 101% | | NOT O | | | Rectangular beam cra | | lango) ===+ | rainta ara- | ing ! | 20.0 | | | | | Max LTB stability (con Note s/s / cont L _{LTB} = | mpression f | | | | 30.0 | m | | | CON | CIII TIMO | Fn =! : | a Calant II | an Chart | | Job No. | Sheet I | No. | Rev. | |---------------------|---|------------------------------|---------------------------|---------------|---------------|---------------------|------------|-------------|---------| | | | Engineerin | | on Sheet | | :\\\\ | | 1 | | | ENGI | NEERS | Consulting | ∟ugineers | | | jXXX | | 4 | | | | | | | | | Member/Location | ו | | | | Job Title | Member D | esign - Reir | nforced Cor | crete Bean | n BS8110. | Drg. Ref. | 1 | | | | | esign - RC | _ | | | 7 | Made by XX | Date | 16/1/20 | 24 Chd. | | | | | | | | | | | BS8110 | | Additiona | l Lonaitud | linal Shea | r Rectangi | ular or Fla | nged Bear | n Utilisati | on Sum | marv | 500110 | | 710001010 | | | | | | | | | | | Lonaitudir | ıal shear be | tween web | and flange | | Consider | only if application | able | ▼ | | | _ | ıal shear wi | | and nange | | | only if application | | V | | | | | eration, Δx (| ⊥
′snan/2 s/s | snan/4 co | | , ,, | 2500 | | | | | | udinal shea | · · | , 55411, 1 60 | Tie, Spair co | | icable | | | | тррпсавш | | | design | | | рр. | leas.e | | | | | Longitudi | ⊥
inal Shear | Retween | Web and F | lange (FC | `2\ | | | | | | | | | | | , | 32% | | OK | | | _ | al shear str
al shear str | | | | rcomont | 3129 | | NOT OK | | | + - | | | | | | 94% | | OK | | | | design trans | | | | _ | 940/ | 0 | UK | | | | inal Shear | | | |)
 | CAO | | -01/- | | | | al shear for | | | | nath | 64% | | OK | | | | nominal trai | | | | | 38%
94% | | OK | | | Longitua | inal Shear | Between | web and F | lange Mai | ndatory C | 94% | 0 | ОК | | | | | | | | | - | | | | | | inal Shear | | eb (EC2) | | | | | | | | - | al shear str | | | | | 49% | 0 | OK | | | | inal Shear | | | | <u> </u> | | | | | | + | al shear str | | | | | | | NOT OK | | ļ | 1 1 | nominal ver | | | | | 24% | | ОК | | | + · · · · · · · · · · · · · · · · · · · | design verti | | | | | 94% | 0 | ОК | | | | inal Shear | | | | | | | | | | Longitudin | al shear for | rce limit pe | r unit lengtl | h | | 79% | o | ОК | | | 1 | nominal ver | | | | | 24% | | ОК | | | Longitudi | inal Shear | Within W | eb Mandat | ory Criter | ia | 94% | o | ОК | | | | | | | | | | | | | Additiona | al Deep Be | am Rectar | ngular Bea | m Utilisat | ion Summ | ary | | | | | | | | | | | | | | | | Deep bear | n design | | | | Consider | only if application | able | ▼ | | | Span to de | epth ratio, s | span / h | | | | | 10.0 | 0 | ОК | | Applicabili | ty of deep l | beam desig | n | | | Not Ap | plicable | е | | | Concrete t | уре | | | | | Norma | l weight | ▼ | | | | | diameter, ø | link.h | | | | None | ▼ mm | | | | | shear links | | ntal section | n, i.e. numl | ber of legs, | <u> </u> | | | | | | ear links, S | | | | | 0 | mm | | | | | dge of load | • • | support, a₁ | O DL @ mid | 0.625h ▼ | N/A | _ | | | | equirement | | | , -1 | | | N/A | | | | | -1 | | | | | | | | | | | Reynolds | | | | | | | | | | | + | eel (deep b | leam) | | | | N/A | | N/A | | | | eel zone de | | Sag s/s sag | cont hog | cant) | N/A | | | | | | eel zone de | | | | Jane | N/A | | | | | | breadth for | | | | | N/F | | N/A | | | | | | | | | | | | | | | mate force | • • | • | | | N/A | | N/A | | | Shear des | ign capacity | y (ueep bea | IIII <i>)</i> | | | N/A | \ | N/A | | | CTDT 4 C | .:4- 2 | | | | | 1 | | | | | CIRIA Gu | | | | | | | | | | | | Itimate mor | | beam) | | | N/A | | N/A | | | | eel (deep b | | <u>.</u> | | | N/A | | N/A | | | | eel zone de | | | | | N/A | | | | | | eel zone de | | | | N/A | N/A | mm | | | | Tension st | eel zone de | epth, T _{zone} (| hog cont) lo | ower band | N/A | N/A | mm | | | | Shear ultir | mate force | (deep bean | າ) | | | N/A | \ | N/A | | | Shear des | ign capacity | (deep bea | ım) | | | N/A | | N/A | |
 | T | T | | 1_ | |-----------|---|--|---
---------------------------------------|---|----------------------------------|---|-------------------------|-----------------| | CON | SULTING | Engineerin | a Calculatio | on Sheet | | Job No. | Sheet No. | | Rev. | | | | Consulting | | | | jXXX | | 6 | Member/Location | 1 | | | | | | esign - Reii | nforced Con | icrete Bean | n BS8110, | Drg. Ref. | 1- | | T | | Member D | esign - RC | Beam | | | | Made by XX | Date 1 | 6/1/2024 | Chd. | | | | | | | | | | | <u>BS8110</u> | If: M > | Mu → cor | mpression st | teel required | | | | N/A | | | | | To scheme | e beam, wit | h compress | sion steel, c | hoose d su | ich that K | $= M/(b_w d^2)$ | f_{cu}) < 10/1 | f _{cu} | | | | cessive cor | | i.e. d > | 608 | and h > | | mm | | | | | | | | | | | | | | | $z = d \left\{ 0.5 \right\}$ | 5 + √(0.25 - | $\left\{\frac{K'}{2}\right\}$ | | | | N/A | mm | | | | | (| 0.9 /) | | | | K//A | | | | | Denth of n | ı
neutral axis, | Y < Y ₁ , ., | | N/A | ≤ | N/A | mm | N/A | | | | leatrar axis, | (d-7)/0.45 | 5 for f < 1 | | | | mm | .3.4.4.4 E | | | Neutral
axis, x | x = | (d-z)/0.40 | for $f_{\infty} \le 0$, for $60 < 0$ | f < 75 N/i | mm² | + | ! | _ | | | leu
axis | | | | C - 405 N | | - | mm | 3.4.4.4 E | | | 2 10 | $0.90 > 0.90 \le \beta_{\rm b}$ $0.90 \le \beta_{\rm b}$ $0.1.10 \le 1.10$ | v < 0 Edfor | f < 60 N/~ | ' _{GU} ≃ ±05 N | / mint | + | mm | 3.4.4.4 E | | | S | 10 | x ≤ 0.30 for | 1 ₀₀ ≥ 00 N/M | M /mana2 | | | mm | .3.4.4.4 E | | | Neutral axis
limit, X _{limit} | .9C
მგ | x ≤ 0.4d for | 00 < 1 _{cu} ≤ 15 | 105 N (*** | - | | mm | .3.4.4.4 E | | | <u>is</u> × | 0 VI | $x \le 0.33d$, | TOT /5< f ≤ | 105 N/mm | $\beta_b = 1.0$ | | mm | .3.4.4.4 E | | | nit ut | ^ 01 | $x \le (\beta_b - 0.4)$ |)d for f _{eu} ≤ 60 |) N/mm² ; | L | N/A | mm | .3.4.4.4 E | | ? | _ Re
⊨ | 90
β _b
1 | $x \le (\beta_b - 0.5)$ |)d for 60 < f | ມ≤ 75 N/mr | n² | N/A | mm | .3.4.4.4 E | | 2 | | ۸ . | | | | | | | | | 2 | | | | | | | | | | |) | Compressi | ion steel | $A_r' = \frac{M}{2}$ | $\frac{K' f_{cu}b d^2}{5 f_y (d-d')}$ | , f _v ≤460N | l/mm ² | N/A | mm ² | Foreword | |) | | | 0.93 | of _y (a-a) | , , | | | | | | | | | . N | Ли , , , | | | | | | | | Tension st | reel | $A_s = \frac{0.95 \text{ f}}{0.95 \text{ f}}$ | $\frac{A_u}{y - Z} + A_s'$ | f <460 | N/mm ² | N/A | mm ² | Foreword | | | | | _ | | | | 1.722 | 111111 | 7 07 07 07 0 | | | 16.45 1 _ | $\left(\frac{f_y}{735}\right)x$, use 7 | $\log \left(1 - \frac{d'}{d}\right)$ | in lieu of 0.05 | F - 10 | ON /no no ² | N/A | | Foreword | | | 1114 - 11- | 735 x, use | 00(1-x) | m neu or 0.9. | y, 1, 1 _y ≤40 | | IN/A | | roreword | | | | 1 | | | | | 4 | | 01.70 | | | Back-analy | ysis of x in | $(0.6/f_{cu}/1.5)$ | $(s.b_w)+(t)$ | _y /1.05).(A | $_{s,prov}$ ')=(f_{y} / | | | N/A | | | _ | 0.9x for for | ≤ 60 N/mm ² ; | | | | <u> </u> | mm | .3.4.4.4 E | | | s = | 0.8x for 60 | < fou ≤ 75 N/ | mm² | | | <u> </u> | mm | .3.4.4.4 E | | | | | 5 < f _{ou} ≤ 105 | | | | | mm | .3.4.4.4 E | | | Note for a | n under rei | nforced sec | tion, requir | $e \ \varepsilon_{st} = \varepsilon_{cc} ($ | $(d-x)/x \geq x$ | $arepsilon_{y}$ for yieldi | ng of tensi | ion steel | | | and $\varepsilon_{sc} = \epsilon$ | $\varepsilon_{cc}(x-d')/x$ | $\geq \varepsilon_y$ for yi | elding of co | mpression | steel, whe | ere $\varepsilon_{cc} = 0.0$ | 035 for f _{cu} | ≤ 60N/m | | | and $\varepsilon_{cc} = 0$ | 0.0035 –(f _{ct} | , –60)/5000 | 00 for f_{cu} > | 60N/mm ² | 2 and $\varepsilon_{y} = 0$ | $(f_y/1.05)/E$ | s, | | | | | | | | | | | | | | ension st | eel area pr | ovided | | | | | 6434 | mm ² | | | | | ovided utilis | sation | | | | 86% | | ОК | | | | ea provided | | | | | | mm ² | | | | | ea provided | | | | | N/A | | N/A | | | sion reinfor | | . acmount | | | | 1.29 | 0/0 | TR49 | | | | | - 0 0024h | h G250+ > | - MAY (0 | 0012 0 00 | | | | | | | rcement uti | | y 11 G250; > | - MAX (U. | 0013, 0.00 | 013(f _{cu} /40)
10 % | | | | | | | | 126 61 | | | | | ОК | | | | einforceme | | | | | N/A | 70 | | | | • | einforceme | | | | | N/A | 0.4 | N/A | | | | rcement (< | |) | | | 1.29 | | | | | | rcement ut | | | | | 32% | | ОК | | | | reinforceme | | | | | N/A | % | | | 6 Max co | mpression i | reinforceme | ent utilisatio | n | | | N/A | | N/A | | % Max ter | nsion or cor | mpression r | einforceme | nt utilisatio | n | | 32% | | ОК | | | | | | | | | | | | | 1 | | | | | | | | | | |) | 1 | | | | | | | | | | | + | 1 | | | | | | | | | | | 1 | | CON | SULTING | Engineerin | n Calculatio | on Sheet | | Job No. | Sheet No. | | Rev. | |------------|---------------|------------|--------------|--------------------------------------|-------------------|--------------------|---------------|-----------------|---------------| | ENGI | NEERS | Consulting | Engineers | JII JIIEEL | | jXXX | 8 | 3 | | | 21, 01 | | | J 22.0 | 1 | 1 | | ` | - | | | | | | | _ | | Member/Location | | | | | ob Title | | | nforced Cor | crete Bean | n BS8110, | Drg. Ref. Made by | Data | | Chd | | dember D | esign - RC | Beam | | | | Made by XX | 10 1 0 | 6/1/2024 | | | | | | | | | | | | <u>ACI318</u> | | | | | | | | | | | | | Tension st | eel area pro |
ovided | | | | | 6434 | mm ² | | | | eel area pro | | sation | | | | 79% | | ОК | | | ion steel are | | | | | | | mm ² | | | | ion steel are | | | | | | N/A | | N/A | | % Min ten | sion reinfor | cement | | | | | 1.29 | | cl.9.6.1 | | % Min ten | sion reinfor | cement (> | = MAX (0.2 | 5b _w d √f _c '/ | f_y , 1.4 b_w | $d/f_y))$ | | | | | | sion reinfor | | | | | | 20% | | ОК | 1 | <u> </u> | | | | | | | | | | | - | el; | | | | | | | | | | | C1, | <u> </u> | 1 | - | 1 | | | | | | | | | | | | | | | | | | | | | | - | 1 | I | | | | | | | | L | CON | ISULTING | Engineering | Calculation She | Δt | Job No. | Sheet No. | | Rev. | |------------------|---|---|--
--|---|------------------------------|--------------|---------------| | | | Consulting | | Ct | jXXX | | 9 | | | | | | | | Member/Location | n | | | | ob Title | Member D | esign - Rein | forced Concrete | Beam BS8110, | Drg. Ref. | | | | | | Design - RC | | | • | Made by XX | Date 1 | 6/1/202 | 24 Chd. | | | | | | | | | | <u>BS8110</u> | | ending | Flanged Be | eam (Singl | y or Doubly Rei | nforced) | | | | | | | <u> </u> | Simply | Continuous | Cantilever | For c | antilevers, ı | width sho | own | | l | s | upported | | | is app | plicable for | downstar | | | T-Be | | w + L / 5
v + L / 10 | b _w + L / 7.14
b _w + L / 14.29 | b _w | | ns as rect- s
pstand bear | | | | | (i) actual flar | | (ii) beam spacing | | | ons will app | | | | | | | | | | | | <u> </u> | | pan | | | | | | N/A | m | | | • | flange, h _f | | | | | <u> </u> | mm | N/A | | | | | nction (span, sec | - | , beam spa | N/A | mm | | | | | m, deflectio | n calcs flanged b | eam) | | 21.70 | | | | $C = M/bd^2$ | | ((0, 0),0.5] | 0.054 | | | N/A | | | | | | K/0.9) ^{0.5}] <: | = 0.95d
k, s = 2.(d-z) (a | nnlicable for all | f) | - | mm
mm | | | cpui oi (| 2011101 (233101 | . 30 033 0100 | $\frac{1}{1}$ $\frac{1}$ | | ·cu/ | IN/A | 111111 | | | compres | sion Stress | Block in F | lange (s <= h _f |) | | N/A | | | | | | | | | | | | | | M _u = | : K'f _{cu} bd ² | | | | | N/A | kNm | | | • | Ratio, K' | | | | | N/A | | | | | N 01 | | 0.156 for f _{eu} ≤60 N | l/mm² | | N/A | mm | .3.4.4.4 | | | 0.90 ≤
β _b
≤ 1.10 | K' = | 0.120 for 60< f _{ou} ≤ | | | | mm | .3.4.4.4 | | | | | 0.094 for 75< f _{ou} ≤ | | $[\beta_b = 1.0]$ | | mm | .3.4.4.4 I | | | 0.90 >
β _b
> 1.10 | ļ ļ | $0.402(\beta_b-0.4) - 0.1$ | | | | mm | .3.4.4.4 | | |].90
β.1. | K' = | 0.357(β _b -0.5) - 0.1 | .43(p _b -0.5)- for | 60< I _{cu} ≤75 I | N/mm ^a N/A | mm | 3.4.4.4 E | | | | | | | | ., . | | | | | | • | or K' ensures that | | | | | | | | | | h the gradual yie
ompression failur | | | ana not by a | <i>i</i>
 | | | | Suuden Ca | Lastrophic Co | Jiripi ession Tallul | e or the concre | | | | | | If: M | < Mu → no | compression | steel | | | N/A | | | | 11. 141 | | | 1 01001 | | | IN/A | | | | | $K = M/bd^2$ | $f_{\rm cu}$ | | | | N/A | | | | | To scheme | beam, cho | ose d such that k | $C = M/(bd^2 f_{cu})$ | < K' (0.15 | | | SC) | | | | pression ste | | | and h > | | mm | | | | , | / 1 | z 1) | 7 | | | | | | | $z = d \left\{ 0.5 \right\}$ | $+\sqrt{0.25-\frac{1}{0}}$ | $\left\{\frac{K}{9}\right\}$ $z <= 0.95$ | d | | N/A | mm | | | | | | | | | | | | | | | eutral axis, | x ≤ x _{limit} | N/A | ≤ | N/A | | N/A | | | Neutral
axis, x | | (d-z)/0.45, for $(d-z)/0.40$, for | 1 ≤ 60 N/mm ² | mm² | - | mm | 3.4.4.4 | | | leu
axis | | | | | | mm | 3.4.4.4 | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | $(d-z)/0.36$, for $x \le 0.5d$ for $f_{c_a} \le 60$
$x \le 0.4d$ for $60 < f_c$
$x \le 0.33d$, for $75 < c$
$x \le (\beta_b - 0.4)d$ for f_c
$x \le (\beta_b - 0.5)d$ for 60 | N/mm ² | , | | mm
mm | .3.4.4.4 | | | <u> 3</u> | 3 _b 1C | $x \le 0.4d \text{ for } 60 < f$ | ≤ 75 N/mm² | | - | mm | .3.4.4.4 | | | Neutral axis
Iimit, X _{limit} | 0.0
7
1 | $x \le 0.33d$, for 75- | f ≤ 105 N/mm | $\beta_b = 1.0$ | | mm | 3.4.4.4 | | | tra
lit, | ۸ ٥ | $x \le (\beta - 0.4)d$ for f | ≤ 60 N/mm² ; | | | mm | 3.4.4.4 | | | lin de u | 30 ×
β _b
1.1 | $x \le (\beta - 0.5)d$ for 6 | 0 < f _m ≤ 75 N/mr | m ² | - | mm | 3.4.4.4 | | | | 0 ^ | | | | , | | | | | | | | | | | | | | | I - · · | eel $A_3 =$ | $\frac{M}{(0.95f_y)z}$, $f_y \le$ | 460N/mm ² | | N/A | mm² | Forework | | | Tension st | | \J y / - | | | | | | | | Tension st | | | _(f /1 05) (\ | $_{\text{prov}}$), $f_{\text{v}} \leq 4\overline{6}$ | N/A | mm | N/A | | | | sis of x in (| 0.67f _{cu} /1.5).(s.b |) — (1 _y / 1.03).(A _{s/} | T T | | | | | | | 0.9x for fou: | ≤ 60 N/mm²; |) – (1 _V / 1.05).(A _{s,} | , proving | 1 | mm | | | | | 0.9x for f _{cu} :
0.8x for 60 | ≤ 60 N/mm²;
< f _{ou} ≤ 75 N/mm² |) – (1 _V) 1.03).(A _{s,} | J. V. Y | N/A | mm | 3.4.4.4 | | | Back-analy | 0.9x for f _{cu} :
0.8x for 60
0.72x for 75 | ≤ 60 N/mm²; | | | N/A
N/A | mm
mm | .3.4.4.4 E | | CON | ISIII TING | Enginoorin | g Calculation | Choot | | Job No. | Sheet No. | | Rev. | |---|---|--|---|-----------------------|---|----------------------------|------------------------------|----------------------|------------------------| | | INEERS | | | Sneet | | jXXX | 1 | .0 | | | | | | | | | Member/Location | | | | | lob Title | Member D |
esian - Reii | nforced Concre | ete Beam | BS8110. | Drg. Ref. | | | | | | Design - RC | _ | norcea coner | ete Beam | B30110, | Made by XX | Date 1 | 6/1/20 | 24 Chd. | | | | | | | | | _ | | BS8110 | If: M | > M _u → cor | mpression s | teel required | | | | N/A | | | | | To scheme | e beam, wit | h compressior | | | ch that K = | $M/(bd^2f_c)$ | _u) < 10/ | f _{cu} | | | for non-ex | cessive cor | <i>np steel,</i> i | .e. d > | N/A | and h > | N/A | mm | | | | . (| | K')) | | | | | | | | | $z = d \left\{ 0.5 \right\}$ | 5 + √(0.25 - | 0.9 | | | | N/A | mm | | | | Donth of n | outral avia | Y | | NI / A | | NI / A | | NI / A | | | | eutral axis | $X \le X_{limit}$ | for f < 6 | N/A | ≤ | N/A | | N/A | | | Neutral
axis, x | x = | (d - z)/0.45,
(d - z)/0.40, | for 60 < | f < 75 N/n | nm² | | mm | 3.4.4.4 E | | | deu | X = | (d-z)/0.36, | for 75 < | f < 105 N | /mm ² | | mm | .3.4.4.4 E | | | | \/" | | | | | | mm
mm | .3.4.4.4 E | | | t is t | 0.90 ≤
β _b
≤ 1.10 | $x \le 0.4d$ for 60 | | | | - | mm | .3.4.4.4 E | | | , a a ⊢ | 0.9
∃ ≥ | $x \le 0.33d$, for | 75< f ≤ | 105 N/mm | $\beta_b = 1.0$ | | mm | .3.4.4.4 E | | | tral
it,) | | $x \le (\beta - 0.4)dx$ | for $f \le 60$ | N/mm² | ρ _b -1.0] | | mm | .3.4.4.4 E | | | Neutral axis
limit, X _{limit} | 0 × 00 × 35 × 100 × 110 | $x \le (\beta - 0.5)df$ | or 60 < f | < 75 N/mm | n ² | | mm | .3.4.4.4 E | | | _ Z | 0.9
F
× 1 | $x \le 0.33d$, for
$x \le (\beta_b - 0.4)d$ t
$x \le (\beta_b - 0.5)d$ f | C, Cu | | | IN/A | | 3.7.7.4 6 | | | | | | | | | | | | | | Compressi | on steel | $A_{x}' = \frac{M - K}{0.95 f_{x}}$ | ten D d | . f.<460N | /mm ² | Ν/Δ | mm ² | Foreword | | <u>-</u>
2 | Compressi | on seech | 0.95 f, | , (d - d') | , 1y=1001 1 | / 111111 | N/A | 111111 | 7 07 07 07 0 | | <u>-</u>
2 | Tension st |
eel | $A_s = \frac{M_u}{0.95 f_y}$ | | f.<460N | N/mm ² | N/A | mm ² | Foreword | | 2 | T CHSION SC | | 0.95 f _y | Z , | , iy= 1001 | 1 / 111111 | N/A | 111111 | 7 07 2 17 07 0 | | 2 | (| -) | | | <u> </u> | | | | | | | If d'> 1 - | $\left \frac{f_y}{735} \right x$, use 7 | $700\left(1-\frac{d'}{x}\right)$ in I | ieu of 0.95 | f _y , f _y ≤46 | 0N/mm ² | N/A | | Foreword | | | | | (0.67f _{cu} /1.5).(| | | | N/A | mm | N/A | | | , | 7 CONT. CO. C. S. | ≤ 60 N/mm²; | | , , ,,, | 1077 () | _ | mm | 3.4.4.4 B | | | s = | 0.8x for 60 | | 12 | | | N/A | mm | 3.4.4.4 E | | | | 0.72x for 7 | '5 < f _{ou} ≤ 105 N/n | nm² | | | N/A | mm | 3.4.4.4 E | | | Note for a | n under rei | nforced section | n, require | $\varepsilon_{st} = \varepsilon_{cc}$ (| $(d-x)/x \geq \varepsilon$ | y for yieldi | ng of ter | sion steel | | | and $\varepsilon_{sc} = \varepsilon$ | $\varepsilon_{cc}(x-d')/x$ | $\geq \varepsilon_y$ for yield | ling of co | mpression | steel, when | re $\varepsilon_{cc} = 0.00$ | 035 for f | c _u ≤ 60N/m | | | and $\varepsilon_{cc} = 0$ | 0.0035 –(f _{ct} | , –60)/50000 i | for f _{cu} > | 60N/mm ² | and $\varepsilon_y = 0$ | f _y /1.05)/E | ;
;; | 1 | | | | | | | | | | | 1 | | | | | | | | | | 2 | | | | | | | | | | | 2 | 1 | | | | | | | | | | 2 | | | | | | | | | | | | | ĺ | | | | | | | | | 2 | | | | | | i . | | | | | 2 | | | | | | | | | | | 2
2
2 | | | | | | | | | | | 2 | | | | | | | | | | | 2
2
2
2
2 | | | | | | | | | | | 2
2
2
2
2 | | | | | | | | | | | 2 | | | | | | | | | | | 2
2
2
2
2
2 | | | | | | | | | | | 2 2 2 2 2 | | | | | | | | | | | 2 | | | | | | | | | | | 2 | | | | | | | | | | | 2 | | | | | | | | | | | 2 | | | | | | | | | | | 2 | | | | | | | | | | | CON | SULTING | Fnaineerin | n Calculatio | on Sheet | | Job No. | | Sheet No. | | Rev. | |-----------------------------------|---|--|--|--|---|-------------------------|-----------|---|------------------------------|----------------------------| | | NEERS | | | on onecc | | jXXX | | 1 | 1 | | | | | | | I | | Member/Loca | | | | | | | | | | | | | ation | | | | | Job Title | Member De | | ntorced Cor | icrete Bear | n BS8110, | Drg. Ref. Made by | | Data | | Chd | | Member De | esign - RC I | Beam | | | ı | Iviade by | XX | Date 10 | 6/1/2024 | | | | | | | | | | | | | <u>BS8110</u> | | | | | | | | | | | | | | Compress | ion Stress | Block in | Weh (s > | h. AND h. | <={0.45,0 | 3603 | n 3 | N/A | | | | | | | | | n only valid | | | | | = 0.5d: | | 11010 01111/01 | med
meene | a as equal. | | | Tomy rana | 7 | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | .3.4.4.4 BC | | $h_f < 0$ | .45d for f _{cu} ≤ | 60 N/mm ² ; | or | | | | | | | .3.4.4.4 BC | | h, < 0 | .36d for 60 | < f ≤ 75 N/ | mm²; or | | | | | | | .3.4.4.4 BC | | | | | | | | | | | cl | .3.4.4.4 BC | | $n_{t} < 0$ | .30 <i>a</i> for 75 | $< T_{cv} \le 105 \text{ N}$ | i/mm² and n | o moment re | edistribution. | | | | | | | 2 | , | | > | | | | | | | | | | 0.45fcu (b - | b_{w}) hr $(d -$ | $0.5h_{\rm f}$) | | | | | N/A | kNm | | | 2 A | $M - M_{\text{uf}}$ | | | | | | | | | | | $2 K_{\rm f} = \frac{\Lambda}{f}$ | $\frac{M-M_{\text{uf}}}{\text{feu } b \text{w } d^2}$ | | | | | | | N/A | | | | 2 | D 11 14 | | | | | | | NI / 0 | | | | 2
2 | Ratio, K' | | 0.450.4 | 200 N | .2 | | | N/A | | 21110 | | 2 | $0.90 \le \beta_{\rm b}$ ≤ 1.10 | K' = | | ≤60 N/mm
0< f _{ou} ≤75 N | | | | | mm | .3.4.4.4 BC
.3.4.4.4 BC | | 2 | 0.9
β ≥ 1 | κ = | | $5 < f_{cu} \le 105$ | | $[\beta_b = 1.$ | 01 | | mm
mm | .3.4.4.4 BC | | | | | 0.054 101 7 | O Cu SIOO | | $L \rho_b - 1$. | 0, | 11/ 🔼 | 111111 | , <i>3.4.4.4 D</i> C | | | If K _f < K' | → no com | pression s | teel | | | | N/A | | | | | | | | | | | | | | | | | $A_{\rm S} = \frac{M_{\rm S} + 1}{2}$ | $k_1 f_{\text{cu}} b_{\text{w}} d$
$0.95 f_{\text{y}} (d$ | $\frac{K_2 a - I}{100}$ | , f _v ≤46 | 0N/mm ² | | | N/A | mm ² | Foreword | | | | | | | | | | | cl | .3.4.4.5 BC | | | | 0.1 for f _{cu} ≤ 6 | | | $k_2 = 0$ | .45 for f _{cv} | ,≤60 |) N/mm², | cl | .3.4.4.5 BC | | | | 0.072 for 60 | $< f_{cu} \le 75 \text{ N/}$ | mm² and | 0 | .32 for 60 |) < f | ້ _{ເພ} ≤75 N/mm | 1 ² and <i>Cl</i> | .3.4.4.5 BC | | | | 0.054 for 75 | < f _{cu} ≤ 105 N | /mm²; and | 0 | .24 for 75 | 5< f | _ ≤105N/mm | cl | .3.4.4.5 BC | | _ | | _ | | <u>"</u> L | | | | _ | | | | 2 | Back-analy | sis of x in | (0.67f _{cu} /1.5 | 5).[b.h _f +(s | $[-h_f).b_w] = (f_y)$ | /1.05).(/ | $A_{s,p}$ | N/A | | N/A | | 2 | . – | | ≤ 60 N/mm ² ; | , , | -0.54 | | | - | mm | .3.4.4.4 BC
.3.4.4.4 BC | | 2 | s = | | $< f_{eu} \le 75 \text{ N/}$
$5 < f_{eu} \le 105$ | N/mm² | _{imit} =0.5d | | | | mm
mm | .3.4.4.4 ВС
.3.4.4.4 ВС | | , 2 | Note for ar | | | | e x ≤ x _{limit} | for vield | dina | | l | , <i>3.4.4.4 D</i> C | | | | | | cion, requii | | , , , , , , , | | 0. 000.0. | | | | | If K _f > K' | → compre | ssion stee | el required | | | | N/A | | | | | Compression | on steel, A _s | ' = [M-(K'f | cub _w d ² +M _{uf} |]/[0.95f _v (d | -d')], f _v ≤ | ≤46 | N/A | | Foreword | | | Tension ste | eel, A _s = [{ | 0.20,0.18, | 0.16 $f_{cu}b_wc$ | 1+0.45f _{cu} h _f (| (b-b _w)]/(| 0.9 | N/A | mm ² | Foreword | | | Note the co | oefficient 0 | .20, 0.18 o | r 0.16 is us | sed for f cu | ≤ <i>60, 75</i> | or | 105N/mm | ² respectiv | ely; | | | . [| f.,) | (a'\ | | `` | | | | | | | | If d'> 1 - | $\frac{3y}{735}$ x, use 7 | $00\left(1-\frac{\alpha}{x}\right)$ | in lieu of 0.9 | $5f_y$ x=0.5 | 5d , f _y : | ≤4€ | N/A | | Foreword | | | |) | ` ′ | | | | | | | | | | Back-analy | sis of x in | (0.67f _{cu} /1.5 | 5).[b.h _f +(s- | $-h_f).b_w]+(f_y)$ | /1.05).(/ | $A_{s,p}$ | N/A | | N/A | | | . – | | ≤ 60 N/mm ² ; | | | | | | mm | .3.4.4.4 BC | | | s = | | $< f_{eu} \le 75 \text{ N/}$
$5 < f_{eu} \le 105$ | | | | | | mm
mm | .3.4.4.4 BC
.3.4.4.4 BC | | | Note for an | | | | $e \ \varepsilon_{st} = \varepsilon_{cc}$ | (d-x)/x > | ے < | | l | L | | | | | | | ompression | | | | | | | | | | | | 60N/mm ² | | | | | | | | | ι- εα | ,, = = = = | Cu - | , | | | ,, - <u>- </u> | - | CON | SULTING | Fngineerin | n Calculati | on Sheet | | Job No. | Sheet No. | | Rev. | |------------|-------------------------------|-----------------------------|-----------------|-----------------------------------|--------------------------|------------------------|------------|-----------------|---------------------------| | | NEERS | | | on sneet | | jXXX | 1 | .2 | | | | | | | | | Member/Location | | | | | ob Title | Member D | ocian Poir | oforced Cor | ocroto Boon | 2 BC0110 | Drg. Ref. | | | | | | esign - RC | | norced Cor | iciete bean | 1 030110, | Made by XX | Date 1 | 6/1/2024 | Chd. | | Terriber D | esign - icc | Deam | | | | | | | BS8110 | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | Compress | sion Stress | s Block in | Web (s > | h _f AND h _f | > {0.45,0 . | .36,0.30}d | N/A | | | | | olex method | | | | | | | | | | | 1516-6 | 1 00 N/2 | | I | | <u> </u> | | C | 1.3.4.4.5 | | $n_r < 0$ | .45d for f _{cu} s | ≤ 60 N/mm²; | or | | | | | C | 1.3.4.4.5 | | $h_f < 0$ |).36d for 60 | $< f_{cu} \le 75 \text{ N}$ | /mm²; or | | | | | C | 1.3.4.4.5 | | h < 0 |).30 <i>d</i> for 75 | < f < 105 N | J/mm² and n | no moment re | distribution | | | C | 1.3.4.4.5 | | ", | 7.000 101 70 | 'cu = 100 i | 1/111111 GITG 1 | io moment re | , distribution. | ┘ | | | | | | L | | | | | | | 2 | | | | eel area pro | | | | | | | mm ² | | | | eel area pro | | | | | | N/A | 2 | N/A | | | ion steel ar | | | | | | | mm ² | N / A | | | ion steel ard
sion reinfor | | utilisation | | | | N/A
N/A | 0/0 | N/A
<i>TR49</i> | | | sion reinfor | | = 0 0032h | h G250+ > | $A = M\Delta Y / \Omega$ | 0018 0 00 | | | | | | sion reinfor | | | WII UZJU, 2 | - 1·1/4/A (U. | 0.00 | N/A | | N/A | | | npression re | | | 04bh _f flanae | e; >= 0.00 | 2b _w h web) | N/A | | | | | npression r | | | | • | , , | N/A | | N/A | | | nsion reinfo | | | | | | N/A | % | | | 6 Max ter | nsion reinfo | rcement ut | ilisation | | | | N/A | | N/A | | 6 Max co | mpression r | reinforceme | ent (<= 0.0 | 4bh _f flange | ; <= 0.04b | wh web) | N/A | % | | | % Max coi | mpression r | reinforceme | nt utilisatio | n | | | N/A | | N/A | | % Max ter | nsion or cor | npression r | einforceme | nt utilisatio | n | | N/A | | N/A | | ? | | | | | | | | | | | ! | ! | • | 1 | | | | | | | | | | | <u> </u> | <u> </u> | | | | | | | | | | | • | | | | | | | | | <u> </u> | | 1 | ? | <u> </u> | <u> </u> | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | Job No. | Sheet No. | | Rev. | |--|--
--|---|--|--|--|--|--|---| | | SULTING | _ | _ | | | JOD IVO. | Sheet No. | | Rev. | | ENGI | INEERS | Consulting | J Engineers | | | jXXX | 1 | .3 | | | | T | | | | | Member/Location | ו | | 4 | | lob Title | Member D | esign - Rei | nforced Cor | ncrete Bean | n BS8110, | Drg. Ref. | • | | | | Member D | esign - RC | Beam | | | | Made by XX | Date 1 | 6/1/2024 | Chd. | | | | | | | | | | | <u>BS8110</u> | | Shear Re | ectangular | Beam (BS | 8110) | | | | | | | | Note that | this design | check is pe | erformed fo | r both recta | angular and | d flanged se | ections, ado | pting | | | rectangula | ar section ed | quations in | the case or | f flanged se | ections; | | | | | | | d is the effe | | | | | | | | | | | at midspan | | | | | | s, tension st | eel is | | | the botton | n steel while | st for supp | orts, tensio | n steel is th | e top stee | <i>l;</i> | | | | | 2 | | | | 0.5 | | | | | | | Jltimate s | shear stress | $v_{ult} = V_d/l$ |
$\frac{18.0 \text{ pwc}}{1}$ | _{cu} ^{0.5} & {5.0, | ,7.0}N/mm | າ [∠]) | | N/mm ² | .3.4.5.2 E | | | shear streng | | .8f _{cu} 0.5 & {5 | .0,7.0}N/m | nm²} | | | N/mm ² | .3.4.5.2 E | | Ultimate s | shear stress | utilisation | | | | | 54% | | OK | | | <u></u> | | | | | | _ | 2 | | | | ear stress, \ | | | 05 - 4 | | 2 | | N/mm ² | | | Enhanced | shear stren | | $v_{\rm c}$ (< $0.8f_{\rm cc}$ | ي ^د & {5.0,7 | /.0}N/mm [·] | | | N/mm ² | cl.3.4.5.8 | | /Ch - | Distance, a | • | | | 24 - 5 | 2.00d ▼ | 1834 | | | | | pacity enha | | | | | | | | Note | | | v _c within 2 | | | | | | | ilculating v | d | | at a from | support and | | | | | se 3.4.5.10
⊤ | | 2 | | | | | | reinforcem | ent provide | d, A _{s,prov} | | | mm ² | | | | $\rho_{\rm W} = 100 A_{\rm S}$ | ,, | (25) 1/3(40) | 0 (1) 1/4 | | | 1.40 | | 12.45 | | | $v_c = (0.79)$ | | _u /25) ^{1/3} (400 | | | | | N/mm ² | cl.3.4.5.4 | | | | $\rho_{\rm W} = 100{\rm A}$ | $a_{s,prov}/b_w d \leq$ | 3 | | | 1.40 | | cl.3.4.5.4 | | | | | 80N/mm ² | 1.00) | | | | N/mm ² | .3.4.5.4 E | | | | | ≥ (0.67 or | | | | 1.00 | | cl.3.4.5.4 | | | 100A _a | Table 3.8 — Va | alues of v_c design con-
Effective de | | | | | | | | | b _v d 12 | 125 150 | 211 | 225 250 | 300 400 | | | | | | | N/n
≤0.15 0.45
0.25 0.53 | N/mm ² N/mm ² N
 0.43 0.41
 0.51 0.49 | 0.40 0.39 | 9 0.38 0.30 | | | | | | | | 0.50 0.67
0.75 0.77 | 0.64 0.62
0.73 0.71 | 2 0.60 0.58 | 8 0.56 0.5 | 4 0.50 | | | | | | | 1.00 0.84
1.50 0.97 | 0.81 0.78
0.92 0.89 | 0.86 0.83 | 3 0.81 0.78 | 8 0.72 | | | | | | | 2.00 1.06
≥ 3.00 1.22 | 1.02 0.98
1.16 1.12 | 2 1.08 1.05 | | | | | | | | | | s has been made in these figures
in the table are derived from | - 111 | | - | | | | | | | where | - | | | - | | | | | | | 0,4 | t be taken as greater than 3; | | | - | | | | | | | $\left(\frac{400}{d}\right)^{\frac{7}{4}}$ should not | t be taken as less than 0.67 f | for members without shear re | einforcement; | | | | | | | | | | | | ŀ | | | | | | | $\left(\frac{400}{d}\right)^{\frac{1}{4}}$ should not
$\geq 0.4 \text{ N/mm}^2$ | t be taken as less than 1 for | members with shear reinforc | ement providing a design she | ear resistance of | | | | | | | $\left(\frac{400}{d}\right)^{\frac{2}{4}} \text{ should not}$ $\geq 0.4 \text{ N/mm}^2.$ For characteristic confound not be take | | members with shear reinforc
in 25 N/mm ² , the values in th | | ear resistance of $(f_{\rm cu}/25)\%$. The value of | | | | | | Minimum | $\geq 0.4 \text{ N/mm}^2$.
For characteristic con
f_{cu} should not be take | encrete strengths greater than
ten as greater than 40. | n 25 N/mm², the values in the | nis table may be multiplied by | ear resistance of (f _{CU} /25)%. The value of | /mm² | 0.40 | N/mm² | 24525 | | Minimum : | \(\begin{align*} \left(\frac{400}{d}\) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | encrete strengths greater than
ten as greater than 40. | n 25 N/mm², the values in the | nis table may be multiplied by | ear resistance of $(f_{cu}/25)^{1/3}$. The value of | /mm² | 0.40 | N/mm ² | .3.4.5.3 E | | | > 0.4 N/mm². For characteristic con from should not be take | gth, $v_r = M$ | n 25 N/mm², the values in th | 4(f _{cu} /40) ^{2/3} | | /mm² | | | | | | >0.4 N/mm² For characteristic confused for the take shear streng | gth, $v_r = M$ $a_{v} \cdot v_c \text{ for } n$ | n 25 N/mm², the values in the IAX (0.4, 0. | 4(f _{cu} /40) ^{2/3} | | /mm² | INVALID | 0.40 | .3.4.5.3 B | | | >0.4 N/mm² For characteristic confused for the take shear streng | gth, $v_r = M$ $a_{v} \cdot v_c \text{ for } n$ | n 25 N/mm², the values in th | 4(f _{cu} /40) ^{2/3} | | /mm² | | 0.40 | | | Check v _d | shear streng < 0.5.2d/a Concrete s | gth, v _r = M a _v .v _c for n | n 25 N/mm², the values in the IAX (0.4, 0. o links (m) city 2d/a _v .v _o | 4 $(f_{cu}/40)^{2/3}$ inor eleme | | | INVALID 363 | 0.40
kN | cl.3.4.5.3
4.5.4, cl.3 | | Check v _d | shear streng one of the strength stren | merete strengths greater than 40 gth, $v_r = M$ $a_v.v_c$ for n shear capac | o links (m
city 2d/a _v .v _c | is table may be multiplied by $4(f_{cu}/40)^{2/3}$ inor element (b_wd) inal links | ents) | 0.00 | INVALID
363
N/A | 0.40
kN | cl.3.4.5.3
4.5.4, cl.3
cl.3.4.5.3 | | Check v _d | shear streng concrete s concrete s concrete s concrete s concrete s concrete s | merete strengths greater than 40. gth, $v_r = M$ $a_v.v_c$ for n shear capace $c + 2d/a_v.v_c$ $c + v_r.b_w/(0.00)$ | n 25 N/mm ² , the values in the lAX (0.4, 0.4) o links (motity $2d/a_v.v_o$ v_c for nominate v_c | 4 $(f_{cu}/40)^{2/3}$ inor eleme | ents) | 0.00 | INVALID
363
N/A
0.46 | 0.40
kN
1.19
mm²/mm | cl.3.4.5.3
4.5.4, cl.3
cl.3.4.5.3 | | Check v _d | shear streng concrete s concrete s concrete s concrete s concrete s concrete s | merete strengths greater than 40 gth, $v_r = M$ $a_v.v_c$ for n shear capac | n 25 N/mm ² , the values in the lAX (0.4, 0.4) o links (motity $2d/a_v.v_o$ v_c for nominate v_c | is table may be multiplied by $4(f_{cu}/40)^{2/3}$ inor element (b_wd) inal links | ents) | 0.00 | INVALID
363
N/A | 0.40
kN
1.19
mm²/mm | cl.3.4.5.3
4.5.4, cl.3
cl.3.4.5.3 | | Check v _d | shear streng one of the strength stren | merete strengths greater than 40 gth, $v_r = M$ $a_v.v_c$ for n_c shear capace $a_v.v_c$ | n 25 N/mm², the values in the last of | 4(f _{cu} /40) ^{2/3} inor eleme c-(b _w d) inal links | ents) | 0.00
) _{nom} > | INVALID
363
N/A
0.46
546 | 0.40
kN
1.19
mm²/mm
kN | cl.3.4.5.3
4.5.4, cl.3
cl.3.4.5.3
4.5.3, cl.3 | | Check v _d | shear streng one of the strength stre | mereta strengths greater than 40 gth, $v_r = M$ $\mathbf{a_v} \cdot \mathbf{v_c}$ for $\mathbf{n_c}$ shear capace $\mathbf{v_r} \cdot \mathbf{v_c} \cdot \mathbf{v_r} \cdot$ | n 25 Nmm ² , the values in the last $(0.4, 0.4)$ o links (m) City $2d/a_v.v_o$ v_c for nomine v_c for nomine v_c | 4(f _{cu} /40) ^{2/3} inor elements c.(b _w d) inal links 460N/mm ² | i.e. (A _{sv} /S | 0.00
) _{nom} > | INVALID
363
N/A
0.46
546
VALID | 0.40
kN
1.19
mm²/mm
kN | cl.3.4.5
4.5.4, cl.3
cl.3.4.5
4.5.3, cl.3
4.5.3, cl.3 | | Check v _d | 0.4 N/max Shear streng $0.5.2d/a$ Concrete s $0.5.2d/a$ | merete strengths greater than the mean spreater than 40 gth, $v_r = M$ $a_v.v_c$ for n_c shear capace $a_v.v_c$ $v_r.b_w/(0.00)$ $v_r+2d/a_v.v_c$ $v_r+2d/a_v.v_c$ v_vv_c for v_vv_c | n 25 Nmm², the values in the lax (0.4, 0.4) o links (m) city $2d/a_v.v_o$ v_c for nominate v_c , | inor elements in all links | i.e. (A _{sv} /S | 0.00
) _{nom} >
1.19
A _{sv} /S > | INVALID
363
N/A
0.46
546
VALID
2.01 | 0.40
kN
1.19
mm²/mm
kN
4.73
mm²/mm | cl.3.4.5.3
4.5.4, cl.3
cl.3.4.5.3
4.5.3, cl.3
cl.3.4.5.3
cl.3.4.5.8 | | Check v _d | 0.4 N/max Shear streng $0.5.2d/a$ Concrete s $0.5.2d/a$ | merete strengths greater than the mean spreater than 40 gth, $v_r = M$ $a_v.v_c$ for n_c shear capace $a_v.v_c$ $v_r.b_w/(0.00)$ $v_r+2d/a_v.v_c$ $v_r+2d/a_v.v_c$ v_vv_c for v_vv_c | n 25 Nmm², the values in the lax (0.4, 0.4) o links (m) city $2d/a_v.v_o$ v_c for nominate v_c , | 4(f _{cu} /40) ^{2/3} inor elements c.(b _w d) inal links 460N/mm ² | i.e. (A _{sv} /S | 0.00
) _{nom} >
1.19
A _{sv} /S > | INVALID
363
N/A
0.46
546
VALID
2.01 | 0.40
kN
1.19
mm²/mm
kN
4.73
mm²/mm | cl.3.4.5
4.5.4, cl.3
cl.3.4.5
4.5.3, cl.3
4.5.3, cl.3
cl.3.4.5
cl.3.4.5 | | Check v _d Check 0.0 | shear streng one of the strength stre | merete strengths greater than 40. gth, $v_r = M$ $a_v.v_c$ for n_c shear capace $v_r.v_c$ | n 25 Nmm ² , the values in the last of th | in table may be multiplied by $4(f_{cu}/40)^{2/3}$. inor eleme $f_{c.}(b_wd)$. inal links. $f_{cu}/40N/mm^2$. $f_{cu}/40N/mm^2$. $f_{cu}/40N/mm^2$. | i.e. (A _{sv} /S
/mm² i.e. A ₂ d/a _v .v _c .(b ₁ | 0.00
) _{nom} >
1.19
A _{sv} /S >
_w d), f _{yv} ≤46 | INVALID 363 N/A 0.46 546 VALID 2.01 (1622 | 0.40
kN
1.19
mm²/mm
kN
4.73
mm²/mm
kN | cl.3.4.5
4.5.4, cl.3
cl.3.4.5
4.5.3, cl.3
cl.3.4.5
cl.3.4.5 | | Check V _d Check V _d | shear streng one of the strength stre | merete strengths greater than the mean greater than 40 gth, $v_r = M$ $\mathbf{a_v.v_c}$ for $\mathbf{n_s}$ shear capace $\mathbf{v_r}$ + $\mathbf{2d/a_v.v_c}$ $\mathbf{v_r}$ + v_r | n 25 Nmm², the values in the last of | in table may be multiplied by $4(f_{cu}/40)^{2/3}$. inor eleme $f_{c.}(b_wd)$. inal links. $f_{cu}/40N/mm^2$. $f_{cu}/40N/mm^2$. $f_{cu}/40N/mm^2$. | i.e. (A _{sv} /S
/mm² i.e. A ₂ d/a _v .v _c .(b ₁ | 0.00
) _{nom} >
1.19
A _{sv} /S >
_w d), f _{yv} ≤46 | INVALID 363 N/A 0.46 546 VALID 2.01 1622 | 0.40
kN 1.19 mm²/mm kN 4.73 mm²/mm kN | cl.3.4.5
4.5.4, cl.3
cl.3.4.5
4.5.3, cl.3
cl.3.4.5
cl.3.4.5 | | Check v _d Check v _d Check v _d | shear streng shear streng concrete s $\mathbf{0.5.2d/a}$ Concrete s $0 < \mathbf{v_d} < \mathbf{v_r}$ $\mathbf{v_{cap,nom}} = (\mathbf{v_{cap}})$ $\mathbf{v_{cap}} = (\mathbf{A_{sv}})$ by all shear streng $\mathbf{v_{cap}} = (\mathbf{A_{sv}})$ | gth, $v_r = M$ $a_v.v_c$ for n_c shear capace $v_r + 2d/a_v.v_c$ 2d/a_v.v$ | n 25 Nmm², the values in the last $(0.4, 0.4)$ of links (modified properties) of links (modified properties) of links (modified properties) of links (modified properties) of links in the last $(0.4, 0.4)$ | in table may be multiplied by $4(f_{cu}/40)^{2/3}$. inor eleme $f_{c.}(b_wd)$. inal links. $f_{cu}/40N/mm^2$. $f_{cu}/40N/mm^2$. $f_{cu}/40N/mm^2$. | i.e. (A _{sv} /S
/mm² i.e. A ₂ d/a _v .v _c .(b ₁ | 0.00
) _{nom} >
1.19
A _{sv} /S >
_w d), f _{yv} ≤46 | INVALID 363 N/A 0.46 546 VALID 2.01 1622 314 3.14 | 0.40
kN
1.19
mm²/mm
kN
4.73
mm²/mm
kN | cl.3.4.5
4.5.4,
cl.3
cl.3.4.5
4.5.3, cl.3
4.5.3, cl.3
cl.3.4.5
cl.3.4.5 | | Check v _d Check v _d Check v _d Area prov Tried A _{sv,pi} Design sho | shear streng shear streng concrete s $0 < v_d < v_r$ $A_{sv}/S)_{nom}$ $V_{cap,nom} = 0$ $A_{sv}/S > b_w$ $V_{cap} = (A_{sv})_{rov}$ by all shear strenges are resistants. | gth, $\mathbf{v}_r = \mathbf{M}$ $\mathbf{a_v.v_c}$ for \mathbf{n} shear capace $\mathbf{v}_r + \mathbf{2d/a_v.v_c}$ \mathbf{v}_r $ | n 25 N/mm², the values in the last $(0.4, 0.4)$ of links (mairty 2d/a _v . v_c for nominal v_c for nominal v_c for nominal v_c $v_$ | in table may be multiplied by $4(f_{cu}/40)^{2/3}$. inor eleme $f_{cu}(b_wd)$ inal links $f_{cu}(a_wd)$ is $f_{cu}(a_wd)$ in | i.e. (A _{sv} /S
/mm² i.e. A
2d/a _v .v _c .(b _v | 0.00
) _{nom} >
1.19
A _{sv} /S >
wd), f _{yv} ≤46 | INVALID 363 N/A 0.46 546 VALID 2.01 (1622 314 3.14 72% | 0.40
kN 1.19 mm²/mm kN 4.73 mm²/mm kN mm²/mm | cl.3.4.5
4.5.4, cl.3
cl.3.4.5
4.5.3, cl.3
cl.3.4.5
cl.3.4.5 | | Check v _d Check v _d Check v _d Area proventied A _{sv,pi} Design shown the while | shear streng shear streng concrete s c | mereta strengths greater than enems as greater than 40 gth, $v_r = M$ $\mathbf{a_v.v_c}$ for $\mathbf{n_s}$ shear capace $\mathbf{a_v.v_c}$ for $\mathbf{n_s}$ shear capace $\mathbf{a_v.v_c}$ for $a_v.v_c$ | o links (m
city 2d/a _v .v _c
v_c for nominate v_c).(b _w d)
design link
v_c)/(0.95f _{yv})
prov,t/S _t).(0. | inor elements in table may be multiplied by $4(f_{cu}/40)^{2/3}$. inor elements (b_wd) inal links $(460N/mm^2)$ (460N/mm ² 460N/mm ² 595f _{yv}).d + $(2460N/mm^2)$ section, $(460N/mm^2)$ | i.e. (A _{sv} /S /mm² i.e. A 2d/a _v .v _c .(b _v _,prov+A _{sv,pro} | 0.00
) _{nom} >
1.19
A _{sv} /S >
_w d), f _{yv} ≤46 | INVALID 363 N/A 0.46 546 VALID 2.01 1622 314 3.14 72% ortance, it n | 0.40 kN 1.19 mm²/mm kN 4.73 mm²/mm kN mm²/mm anay be | cl.3.4.5
4.5.4, cl.3
cl.3.4.5
4.5.3, cl.3
4.5.3, cl.3
cl.3.4.5
cl.3.4.5 | | Check v _d Check v _d Check v _d Area prov Tried A _{sv,pi} Design sho Note while Satisfactor | shear streng shear streng concrete s $0 < v_d < v_r$ $A_{sv}/S)_{nom}$ $V_{cap,nom} = 0$ $A_{sv}/S > b_w$ $V_{cap} = (A_{sv})_{rov}$ by all shear strenges are resistants. | gth, $v_r = M$ $a_v.v_c$ for n_c shear capace $a_v.v_c$ for n_c shear capace $a_v.v_c$ for n_c $a_v.v_c$ a_v | n 25 Nmm², the values in the last of l | inor elements in table may be multiplied by $4(f_{cu}/40)^{2/3}$. inor elements (b_wd) . inal links $(460N/mm^2)$. 460N/mm ² section, A_{sv} . ed in all best inor structure. | i.e. (A _{sv} /S) /mm² i.e. A 2d/a _v .v _c .(b _v /prov+A _{sv,pro} | 0.00
) _{nom} >
1.19
A _{sv} /S >
_w d), f _{yv} ≤46 | INVALID 363 N/A 0.46 546 VALID 2.01 1622 314 3.14 72% ortance, it n | 0.40 kN 1.19 mm²/mm kN 4.73 mm²/mm kN mm²/mm anay be | cl.3.4.5.3
cl.3.4.5.3
4.5.3, cl.3
4.5.3, cl.3
cl.3.4.5.3
cl.3.4.5.3 | | CON | SULTING | Engineerii | ng Calculati | on Sheet | | | Job N | J. | Sheet No. | | Rev. | |--|--|--
---|--|--|---|--|---------------------------------
--|--|---| | | | | g Engineers | | | | jXX | X | 1 | .4 | | | | | | | | | | Member/L | ocation | | | | | ob Title | Member D | Design - Rei | nforced Co | ncrete Be | am BS8 | 3110, | Drg. Ref. | | | | | | 1ember D | esign - RC | | | | | | Made by | XX | Date 1 | 6/1/2024 | Chd. | | | | | | | | | | | | | <u>EC2</u> | | Shear Re | ctangular | Beam (EC | 2) | | | | | | | | | | | | | erformed fo | r both red | ctangula | ar and | l flange | ed se | ctions, add | ptina | | | | | | the case o | | | | | | | <i>F y</i> | | | | | - | h to the ter | | | | esnect | ive o | l
f whether t | he section | | | | | | ng at suppo | | | | | | | | | | | | | orts, tensio | | | | | 54115 | | | | | THE BOLLOTT | The Secondarian | Stron Supp | 101137 1011310 | Tr Secci 15 | | J.C.C. | <u>′</u> | | | | | | Iltimate s | hear stress | s v = V ./ | $b_{\rm w}d$ (< $v_{\rm Rd,r}$ | (- 450)= |
∩ 18/1- | f . /25 | በ) f . | f. < 5 | 2 55 | N/mm ² | 3(3), cl. | | | | | $r_{\theta=45^{\circ})} = 0.18$ | | | | | 'CK — ~ | | N/mm ² | 3(3), cl. | | | shear stress | | T | (1 1 _{ck} /230 | //·ˈck/ ˈck | 23011 | | | 57% | | OK | | itilliate 5 | | dunsation | | | | | | | 37 70 | | OK | |)esian sh | ⊥
ear stress, | v. – V./h | <u> </u> | | | | | | 2 55 | N/mm ² | | | | | | | | | f /2 | v 1 | 00 | | N/mm ² | cl.6.2.3(| | illianceu | Distance, | | $v_{Rd,c}$ (< v_{Rd} | d,max(θ=45°) | -0.16(1 | -1 _{ck} / 2 | | _ | i e | 1 | C1.0.2.3(| | Shoor co | | | v calculatio | a v with | nin 2d o | fount | 2.00d | d <u>co</u> | 1834 | | Note | | | | | y calculatin | | | | | | | | Note | | | | | support as | | | | Tipioye | eu III. | Teau oi ca | Luiationg | / _d | | it a rrom . | | | g against u | | | | | | 5 4 5 4 | 2 | | | | + | | reinforcem | ent provid | aea, A _{s,I} | prov | | | | mm ² | | | | $\rho_{\rm W} = 100A$ | | 2 . | | | | 2/2 - | n E . | 1.40 | | | | | $V_{Rd,c} = C_{Rd}$ | | $^3+k_1.\sigma_{cp} \ge 1$ | | | 0.03 | 5k ^{3/2} f _{ck} | ^{3.3} , k | | N/mm ² | 2(1), cl. | | | | | $18/\gamma_{\rm c}=0.18$ | | .12 | | | | 0.12 | | cl.6.2.2(| | | | | $(200/d) \le 2$ | | | | | | 1.47 | | cl.6.2.2(| | | | 100 | / - | | | | | | 1 1 10 | 07. | 16 2 2/ | | | | $\rho_{\rm W} = 100$ | $\lambda_{s,prov}/b_w d \le$ | 2 | | | | | 1.40 | 70 | cl.6.2.2(| | Table 8.2 : $\rho_1 = A_s/b_0$ | ≤ 200 | $\sigma_{cp} = F/b_{w}$ | $A_{s,prov}/D_wG \le h \le 0.2f_{cd} = 0.2f_{$ | 0.2α _{cc} .f _{ck/} : v _{Rd, c} N/mm ² (in, d (mm) | | | | f _{ck} ≤ | | N/mm ² | 2(1), cl. | | $\rho_1 = A_s/b0$ 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% | 0.54
0.59
0.68
0.75
0.80
0.85 | $\sigma_{cp} = F/b_w$ of slabs without sh 225 250 0.52 0.50 0.57 0.56 0.66 0.64 0.72 0.71 0.78 0.76 0.83 0.81 | $\begin{array}{lll} h \leq 0.2f_{cd} = \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$ | 0.2α _{cc} ·f _{ck/} v _{Rd,c} N/mm ² (e. v _{Rd,c} N/mm ²) v _{Rd,c} N/mm ² (o. 0.43 0.51 0.58 0.64 0.69 0.73 | 500
0.40
0.48
0.55
0.61
0.66
0.70 | 600
0.38
0.47
0.53
0.59
0.63
0.67 | 750
0.36
0.45
0.51
0.57
0.61
0.65 | f _{ck} ≤ | | <u> </u> | 1 | | $\rho_1 = A_s/b$ 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 2.00% | 0.54
0.54
0.59
0.68
0.75
0.80
0.85
0.94 | $\sigma_{cp} = F/b_w$ of slabs without sh 225 250 0.52 0.50 0.57 0.56 0.66 0.64 0.72 0.71 0.78 0.76 0.83 0.81 0.91 0.89 | $\begin{array}{lll} h \leq 0.2f_{cd} = \\ & \\ & \\ \text{lear reinforcement} \\ \hline & & \\$ | 0.2α _{cc} ·f _{ck/} v _{Rd,c} N/mm ² (contained by the distribution of o | Class C30/3 500 0.40 0.48 0.55 0.61 0.66 0.70 0.77 | 600
0.38
0.47
0.53
0.59
0.63
0.67
0.74 | 750
0.36
0.45
0.51
0.57
0.61
0.65
0.71 | f _{ck} ≤ | | <u> </u> | 1 | | $\rho_1 = A_s/b0$ 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% | 0.54
0.54
0.59
0.68
0.75
0.80
0.85
0.94 | $\sigma_{cp} = F/b_w$ of slabs without sh 225 250 0.52 0.50 0.57 0.56 0.66 0.64 0.72 0.71 0.78 0.76 0.83 0.81 | $\begin{array}{lll} h \leq 0.2f_{cd} = \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$ | 0.2α _{cc} ·f _{ck/} v _{Rd,c} N/mm ² (contained by the distribution of o | 500
0.40
0.48
0.55
0.61
0.66
0.70 | 600
0.38
0.47
0.53
0.59
0.63
0.67 | 750
0.36
0.45
0.51
0.57
0.61
0.65 | f _{ck} ≤ | | <u> </u> | 1 | | $\rho_1 = A_s/b$ 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 2.00% | 0.54
0.54
0.59
0.68
0.75
0.80
0.85
0.94 | $\sigma_{cp} = F/b_w$ of slabs without shape slabs without slabs without shape of slabs without w | $\begin{array}{lll} h \leq 0.2f_{cd} = \\ & \\ & \\ \text{lear reinforcement} \\ \hline \textit{Effective depth} \\ 300 & 350 \\ 0.47 & 0.45 \\ 0.54 & 0.52 \\ 0.62 & 0.59 \\ 0.68 & 0.65 \\ 0.73 & 0.71 \\ 0.78 & 0.75 \\ 0.85 & 0.82 \\ 1.816 & 1.75 \\ \hline \end{array}$ | 0.2α _{cc} ·f _{ck/} v _{Rd,c} N/mm ² (contained by the distribution of o | Class C30/3 500 0.40 0.48 0.55 0.61 0.66 0.70 0.77 | 600
0.38
0.47
0.53
0.59
0.63
0.67
0.74 | 750
0.36
0.45
0.51
0.57
0.61
0.65
0.71 | f _{ck} ≤ | | <u> </u> | 1 | | 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 2.00% | 200
0.54
0.59
0.68
0.75
0.80
0.85
0.94
2.000 | $\sigma_{cp} = F/b_w$ of slabs without sh 225 250 0.52 0.50 0.57 0.56 0.66 0.64 0.72 0.71 0.78 0.76 0.83 0.81 0.91 0.89 1.943 1.894 | $\begin{array}{lll} h \leq 0.2f_{cd} = \\ & \\ & \\ \text{lear reinforcement} \\ \hline \textit{Effective
depth} \\ 300 & 350 \\ 0.47 & 0.45 \\ 0.54 & 0.52 \\ 0.62 & 0.59 \\ 0.68 & 0.65 \\ 0.73 & 0.71 \\ 0.78 & 0.75 \\ 0.85 & 0.82 \\ 1.816 & 1.75 \\ \hline \end{array}$ | 0.2α _{cc} ·f _{ck/} v _{Rd,c} N/mm ² (contained by the distribution of o | 500
0.40
0.48
0.55
0.61
0.66
0.70
0.77 | 600
0.38
0.47
0.53
0.59
0.63
0.67
0.74 | 750
0.36
0.45
0.51
0.57
0.61
0.65
0.71 | f _{ck} ≤ | | <u> </u> | 1 | | $\rho_{1} = A_{s}/b_{0}$ 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 2.00% k Table 8.3 | 200
0.54
0.59
0.68
0.75
0.80
0.85
0.94
2.000 | $\sigma_{cp} = F/b_w$ of slabs without sh 225 250 0.52 0.50 0.57 0.56 0.66 0.64 0.72 0.71 0.78 0.76 0.83 0.81 0.91 0.89 1.943 1.894 | $h \leq 0.2f_{cd} =$ lear reinforcement Effective depth 300 350 0.47 0.45 0.54 0.52 0.62 0.59 0.68 0.65 0.73 0.71 0.78 0.75 0.85 0.82 1.816 1.75 | -0.2α _{cc} .f _{ck/} v _{Rd,c} N/mm ² (contained in the contained cont | Class C30/3 500 0.40 0.48 0.55 0.61 0.66 0.70 0.77 1.632 | 600
0.38
0.47
0.53
0.59
0.63
0.67
0.74 | 750
0.36
0.45
0.51
0.57
0.61
0.65
0.71 | f _{ck} ≤ | | <u> </u> | 1 | | ρ ₁ = A _s /b ₀ 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 2.00% k Table 8.3 f _{ck} (N/m Modifica | 200
0.54
0.59
0.68
0.75
0.80
0.85
0.94
2.000
Concrete stren | $\sigma_{cp} = F/b_w$ of slabs without shape s | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | 0.2α _{cc} .f _{ck/} V _{Rd,c} N/mm ² (6) 1, V _{Rd,c} N/mm ² (6) 1, V _{Rd,c} N/mm ² (7) 1, V _{Rd,c} N/mm ² (8) 1, V _{Rd,c} N/mm ² (9) 1, V _{Rd,c} N/mm ² (10) | S00 0.40 0.48 0.55 0.61 0.66 0.70 0.77 1.632 | 7 concret 600 0.38 0.47 0.53 0.59 0.63 0.67 0.74 1.577 | 750
0.36
0.45
0.57
0.61
0.65
0.71 | f _{ck} ≤ | 0.00 | N/mm ² | 2(1), cl. | | ρ ₁ = A _s /b ₀ 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 2.00% k Table 8.3 f _{ck} (N/m Modifica | 200
0.54
0.59
0.68
0.75
0.80
0.85
0.94
2.000
Concrete stren | $\sigma_{cp} = F/b_w$ of slabs without shape s | $h \leq 0.2f_{cd} =$ lear reinforcement Effective depth 300 350 0.47 0.45 0.54 0.52 0.62 0.59 0.68 0.65 0.73 0.71 0.78 0.75 0.85 0.82 1.816 1.75 | 0.2α _{cc} .f _{ck/} V _{Rd,c} N/mm ² (6) 1, V _{Rd,c} N/mm ² (6) 1, V _{Rd,c} N/mm ² (7) 1, V _{Rd,c} N/mm ² (8) 1, V _{Rd,c} N/mm ² (9) 1, V _{Rd,c} N/mm ² (10) | S00 0.40 0.48 0.55 0.61 0.66 0.70 0.77 1.632 | 7 concret 600 0.38 0.47 0.53 0.59 0.63 0.67 0.74 1.577 | 750
0.36
0.45
0.57
0.61
0.65
0.71 | f _{ck} ≤ | 0.00 | <u> </u> | 1 | | 0.25% 0.50% 0.75% 1.00% 1.25% 2.00% k Table 8.3 f _{ck} (N/m Modifica | 200 0.54 0.59 0.68 0.75 0.80 0.85 0.94 2.000 Concrete stren 2000 Concrete stren 2000 Concrete stren 2000 | $\sigma_{cp} = F/b_w$ of slabs without shape s | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Soo
0.40
0.48
0.55
0.61
0.66
0.70
0.77
1.632
Soo
4 1.19 | 7 concret 600 0.38 0.47 0.53 0.59 0.63 0.67 0.74 1.577 | 750
0.36
0.45
0.57
0.61
0.65
0.71 | f _{ck} ≤ | 0.00 | N/mm ² N/mm ² | 2(1), cl. | | 0.25% 0.50% 0.75% 1.00% 1.25% 2.00% k Table 8.3 f _{ck} (N/m Modifica | 200 0.54 0.59 0.68 0.75 0.80 0.85 0.94 2.000 Concrete stren 2.000 Concrete stren 2.000 Concrete stren 2.000 | $\sigma_{cp} = F/b_w$ of slabs without shape s | h ≤ $0.2f_{cd}$ = lear reinforcement Effective depth 300 350 0.47 0.45 0.54 0.52 0.62 0.59 0.68 0.65 0.73 0.71 0.78 0.75 0.85 0.82 1.816 1.75 In factor 0 35 0 1.05 .08/ γ_s . $f_{ck}^{0.5}$, | 0.2α _{cc} .f _{ck/} v _{Rd,c} N/mm ² (control of the late | Soo
0.40
0.48
0.55
0.61
0.66
0.70
0.77
1.632
Soo
4 1.19 | 7 concret 600 0.38 0.47 0.53 0.59 0.63 0.67 0.74 1.577 | 750
0.36
0.45
0.57
0.61
0.65
0.71 | f _{ck} ≤ | 0.00
0.37 | N/mm ² N/mm ² 0.60 | 2(1), cl. | | 0.25% 0.50% 0.75% 1.00% 1.25% 2.00% k Table 8.3 f _{ck} (N/m Modifica | 200 0.54 0.59 0.68 0.75 0.80 0.85 0.94 2.000 Concrete stren 2.000 Concrete stren 2.000 Concrete stren 2.000 | $\sigma_{cp} = F/b_w$ of slabs without shape s | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | 0.2α _{cc} .f _{ck/} v _{Rd,c} N/mm ² (control of the late | Soo
0.40
0.48
0.55
0.61
0.66
0.70
0.77
1.632
Soo
4 1.19 | 7 concret 600 0.38 0.47 0.53 0.59 0.63 0.67 0.74 1.577 | 750
0.36
0.45
0.57
0.61
0.65
0.71 | f _{ck} ≤ | 0.00 | N/mm ² N/mm ² 0.60 | 2(1), cl. | | 0.25% 0.50% 0.75% 1.00% 1.25% 2.00% k Table 8.3 f _{ck} (N/m Modifica | 200 0.54 0.59 0.68 0.75 0.80 0.85 0.94 2.000 Concrete stren 2000 Concrete stren Concrete stren Concrete stren Concrete | $\sigma_{cp} = F/b_w$ of slabs without shape s | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | 0.2α _{cc} .f _{ck/} v _{Rd,c} N/mm ² (control of the late | Soo
0.40
0.48
0.55
0.61
0.66
0.70
0.77
1.632
Soo
4 1.19 | 7 concret 600 0.38 0.47 0.53 0.59 0.63 0.67 0.74 1.577 | 750
0.36
0.45
0.57
0.61
0.65
0.71
1.516 | | 0.00 0.37 INVALID 274 | N/mm ² N/mm ² 0.60 kN | 2(1), cl. 2(5), cl. cl.6.2.1(2(1), cl. | | 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 2.00% k Table 8.3 f _{ck} (N/m Modifica Minimum 9 Check V _d 5.8 | Section Sec | $\sigma_{cp} = F/b_w$ of slabs without shape s | h ≤ $0.2f_{cd}$ = lear reinforcement Effective depth 300 350 0.47 0.45 0.54 0.52 0.62 0.59 0.68 0.65 0.73 0.71 0.78 0.75 0.85 0.82 1.816 1.75 In factor 0 35 0 1.05 Iinks (mircity 2d/a _v . v | 0.2α _{cc} ·f _{ck/} v _{Rd,c} N/mm ² (v v,d (mm) 400 0.43 0.51 0.58 0.64 0.69 0.73 0.80 1.707 40 45 1.10 1.14 1.14 1.15 1.16 1.16 1.16 1.16 1.17 1.16 1.16 1.17 1.18 | S00 0.40 0.48 0.55 0.61 0.66 0.70 0.77 1.632 500 4 1.19 ents) | 7 concret 600 0.38 0.47 0.53 0.59 0.63 0.67 0.74 1.577 | 750
0.36
0.45
0.57
0.61
0.65
0.71
1.516 | | 0.00 0.37 INVALID 274 | N/mm ² N/mm ² 0.60 kN | 2(1), cl. 2(5), cl. cl.6.2.1(2(1), cl. | | 0.25% 0.50% 0.75% 1.00% 1.25% 2.00% k Table 8.3 f _{ck} (N/m Modifica Check V _d 5.8 Check 0.0 5.1 | Section Sec | $\sigma_{cp} = F/b_w$ of slabs without shape s | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 10.2α _{cc} ·f _{ck/} | Soo
0.40
0.48
0.55
0.61
0.66
0.70
0.77
1.632
Soo
4 1.19
ents) | 7 concret 600 0.38 0.47 0.53 0.63 0.67 0.74 1.577 | 750 0.36 0.45 0.51 0.57 0.61 0.65 0.71 1.516 | 00 | 0.00 0.37 INVALID 274 N/A 0.42 | N/mm ² N/mm ² 0.60 kN 0.37 mm ² /mm | 2(1), cl. 2(5), cl. cl.6.2.1(2(1), cl. cl.6.2.1(3(3), cl. | | 0.25% 0.50% 0.75% 1.00% 1.25% 2.00% k Table 8.3 f _{ck} (N/m Modifica Alinimum s Check v _d 5.8 | Section Sec | $\sigma_{cp} = F/b_w$ of slabs without shape s | h ≤ $0.2f_{cd}$ = lear reinforcement Effective depth 300 350 0.47 0.45 0.54 0.52 0.62 0.59 0.68 0.65 0.73 0.71 0.78 0.75 0.85 0.82 1.816 1.75 In factor 0 35 0 1.05 Iinks (mircity 2d/a _v . v | 10.2α _{cc} ·f _{ck/} | Soo
0.40
0.48
0.55
0.61
0.66
0.70
0.77
1.632
Soo
4 1.19
ents) | 7 concret 600 0.38 0.47 0.53 0.63 0.67 0.74 1.577 | 750 0.36 0.45 0.51 0.57 0.61 0.65 0.71 1.516 | 00 | 0.00 0.37 INVALID 274 | N/mm ² N/mm ² 0.60 kN 0.37 mm ² /mm | 2(1), cl. 2(5), cl. cl.6.2.1(2(1), cl. cl.6.2.1(3(3), cl. | | 0.25% 0.50% 0.50% 0.75% 1.00% 1.25% 2.00% k Table 8.3 f _{ck} (N/m Modifica Check V _d 5.8 Check 0.0 | Section Sec | $\sigma_{cp} = F/b_w$ of slabs without shape s | $h \le 0.2f_{cd} =$ lear reinforcement Effective depth 300 350 0.47 0.45 0.54 0.52 0.62 0.59 0.68 0.65 0.73 0.71 0.78 0.75 0.85 0.82 1.816 1.75 In factor 0 35 0 1.05 Inks (mircity 2d/a _v . v mal links 87f _{yv}), f _{yv} ≤ S) _{nom} .(0.87 | 10.2α _{cc} ·f _{ck/} | Soo
0.40
0.48
0.55
0.61
0.66
0.70
0.77
1.632
Soo
4 1.19
ents) | 7 concret 600 0.38 0.47 0.53 0.63 0.67 0.74 1.577 | 750 0.36 0.45 0.57 0.61 0.65 0.71 1.516 | 000 | 0.00 0.37 INVALID 274 N/A 0.42 376 | N/mm² N/mm² N/mm² 0.60 kN 0.37 mm²/mm kN | 2(1), cl. 2(5), cl. cl.6.2.1(2(1), cl. cl.6.2.3(| | 0.25% 0.50% 0.50% 0.75% 1.00% 1.25% 2.00% k Table 8.3 f _{ck} (N/m Modifica Sheck V _d 5.8 Check V _d | $ \frac{200}{0.54} $ 0.54 0.59 0.68 0.75 0.80 0.85 0.94 2.000 Concrete strent $ \frac{200}{0.85} $ ation factor $ \frac{200}{0.85} $ $\frac{200}{0.85} | $\sigma_{cp} = F/b_w$ of slabs without short | $\begin{array}{c c} h \leq 0.2f_{cd} = \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$ | 10.2α _{cc} ·f _{ck/} 10.31 10.58 10.58 10.64 10.69 10.73 10.80 10.64 10.70 10.73 10.80 10.73 10.80 10.73 10.80 10.73 10.80 10.73 10.80 10.73 10.80 10.73 10.80 10.73 10.80 10.80 10.73 10.80
10.80 10.80 10.80 10.80 10.80 10.80 10.80 10.80 10.80 10.80 10.80 10.80 10.80 10.80 10.80 10.80 10.80 10.80 10.80 | 500 0.40 0.48 0.55 0.61 0.66 0.70 0.77 1.632 500 4 1.19 ents) m ² i.e. (cotθ, f _{yv} | 7 concret 600 0.38 0.47 0.53 0.59 0.63 0.67 1.577 N/mm A _{sv} /S) ò6000 | 750 0.36 0.45 0.57 0.61 0.65 0.71 1.516 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 000 | 0.00 0.37 INVALID 274 N/A 0.42 376 | N/mm ² N/mm ² N/mm ² 0.60 kN 0.37 mm ² /mm kN | 2(1), cl. 2(5), cl. cl.6.2.1(2(1), cl. cl.6.2.3(cl.6.2.1(| | 0.25% 0.50% 0.50% 0.75% 1.00% 1.25% 1.50% 2.00% k Table 8.3 f _{ck} (N/m Modifica Check V _d 5.8 Check V _d 1.3.4.5.1 | $ \frac{200}{0.54} $ 0.54 0.59 0.68 0.75 0.80 0.85 0.94 2.000 Concrete stren $ \frac{2d}{a_{v}} $ Concrete $ \frac{2d}{a_{v}} $ Concrete $ \frac{\sqrt{A_{sv}/S}}{\sqrt{S}} $ $ \frac{\sqrt{A_{sv}/S}}{\sqrt{S}} $ $ \frac{\sqrt{A_{sv}/S}}{\sqrt{S}} $ Concrete | $\sigma_{cp} = F/b_w$ of slabs without short witho | $h \le 0.2f_{cd} =$ lear reinforcement Effective depth 300 350 0.47 0.45 0.54 0.52 0.62 0.59 0.68 0.65 0.73 0.71 0.78 0.75 0.85 0.82 1.816 1.75 In factor 0 35 0 1.05 In factor 0 35 0 1.05 In factor 0 35 0 1.05 Selective 2d/a _v . V In al links 87f _{yv}), f _{yv} ≤ S) 887f _{yv}).cotθ | 0.2α _{cc} ·f _{ck/} v _{Rd,c} N/mm² (v N/m² N/m | $\frac{500}{0.40}$ 0.40 0.48 0.55 0.61 0.66 0.70 0.77 1.632 | 7 concret 600 0.38 0.47 0.59 0.63 0.67 0.74 1.577 N/mm A _{sv} /S) ,≤6000 | 750 0.36 0.45 0.57 0.61 0.65 0.71 1.516 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 2
A _{sv} /\$ | 0.00 0.37 INVALID 274 N/A 0.42 376 VALID 1.32 | N/mm ² N/mm ² 0.60 kN 0.37 mm ² /mm kN 4.48 mm ² /mm | 2(1), cl. 2(5), cl. cl.6.2.1(2(1), cl. cl.6.2.3(cl.6.2.3(cl.6.2.3(| | 0.25% 0.50% 0.50% 0.75% 1.00% 1.25% 1.50% 2.00% k Table 8.3 f _{ck} (N/m Modifica Check V _d 5.8 Check V _d 1.3.4.5.1 | $\begin{array}{c} \frac{1}{\sqrt{200}} \\ 0.54 \\ 0.59 \\ 0.68 \\ 0.75 \\ 0.80 \\ 0.85 \\ 0.94 \\ 2.000 \\ \hline \\ \text{Concrete strend} \\ \text{Concrete strend} \\ \text{Concrete} C$ | $\sigma_{cp} = F/b_w$ of slabs without short witho | $h \le 0.2f_{cd} =$ lear reinforcement Effective depth 300 350 0.47 0.45 0.54 0.52 0.62 0.59 0.68 0.65 0.73 0.71 0.78 0.75 0.85 0.82 1.816 1.75 Infactor 0 35 0 1.05 Infactor Infactor 0 35 0 1.05 Infactor I | 10.2α _{cc} ·f _{ck/} | Class C30/3 500 0.40 0.48 0.55 0.61 0.66 0.70 0.77 1.632 50 4 1.19 $f_{ck} \le 50I$ ents) $f_{yv} \le 600$ f_{yv}).0.96 | 600
0.38
0.47
0.59
0.63
0.67
0.74
1.577
N/mm
A _{sv} /S)
,≤600
0N/mid.cotθ | 750 0.36 0.45 0.57 0.61 0.65 0.71 1.516 | 2
A _{sv} /S | 0.00 0.37 INVALID 274 N/A 0.42 376 VALID 1.32 2792 | N/mm² N/mm² N/mm² 0.60 kN 0.37 mm²/mm kN 4.48 mm²/mm kN | 2(1), cl. 2(5), cl. cl.6.2.1(2(1), cl. cl.6.2.3(cl.6.2.3(cl.6.2.3(cl.6.2.3(| | 0.25% 0.50% 0.50% 0.75% 1.00% 1.25% 2.00% k Table 8.3 f _{ck} (N/m Modifica Check v _d 5.8 Check v _d 1.3.4.5.1 | 0.54 0.54 0.59 0.68 0.75 0.80 0.85 0.94 | $\sigma_{cp} = F/b_w$ of slabs without shape s | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 10.2α _{cc} .f _{ck/} 10.2α _{cc} .f _{ck/} 10.2α _{cc} .f _{ck/} 10.2α _{cc} .f _{ck/} 10.43 10.51 10.58 10.64 10.69 10.73 10.80 10.73 10.80 10.73 10.80 10.64 10.70 10.70 10.80 10.64 10.70 10.80 | Class C30/3 500 0.40 0.48 0.55 0.61 0.66 0.70 0.77 1.632 50 4 1.19 ents) $f_{ck} \le 50I$ $f_{yv} \le 600$ $f_{yv} > 0.90$ $f_{yv} > 0.90$ | 7 concret 600 0.38 0.47 0.53 0.59 0.63 0.67 1.577 N/mm A_{sv}/S $_{v} \le 600$ 0N/mi d .cot θ $(\theta = 45^{\circ})$. | 750 0.36 0.45 0.57 0.61 0.65 0.71 1.516 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 2
A _{sv} /S | 0.00 0.37 INVALID 274 N/A 0.42 376 VALID 1.32 2792 22.0 | N/mm² N/mm² N/mm² 0.60 kN 0.37 mm²/mm kN 4.48 mm²/mm kN o | 2(1), cl. 2(5), cl. cl.6.2.1(2(1), cl. cl.6.2.3(cl.6.2.3(cl.6.2.3(| | 0.25% 0.50% 0.50% 0.75% 1.00% 1.25% 1.50% 2.00% k Table 8.3 f _{ck} (N/m Modifica Tinimum s Check v _d 5.8 Check v _d 1.3.4.5.1 d.3.4.5.1 | $\begin{array}{c} & & \\$ | $\sigma_{cp} = F/b_w$ of slabs without short | $h \le 0.2f_{cd} =$
lear reinforcement Effective depth 300 350 0.47 0.45 0.54 0.52 0.62 0.59 0.68 0.65 0.73 0.71 0.78 0.75 0.85 0.82 1.816 1.75 In factor 0 35 links (mir city 2d/a _V .V mal links .87f _{yV}), f _{yV} ≤ S) _{nom} .(0.87 s .87f _{yV}).cotθ S+A _{SV,prov,t} / = 22° ≤ 0 ion links in | 10.2α _{cc} .f _{ck/} 10.2α _{cc} .f _{ck/} 10.2α _{cc} .f _{ck/} 10.2α _{cc} .f _{ck/} 10.43 10.51 10.58 10.64 10.69 10.73 10.80 10.73 10.80 10.73 10.80 10.64 10.70 10.70 10.80 10.64 10.70 10.80 | Class C30/3 500 0.40 0.48 0.55 0.61 0.66 0.70 0.77 1.632 50 4 1.19 ents) $f_{ck} \le 50I$ $f_{yv} \le 600$ $f_{yv} > 0.90$ $f_{yv} > 0.90$ | 7 concret 600 0.38 0.47 0.53 0.59 0.63 0.67 1.577 N/mm A_{sv}/S $_{v} \le 600$ 0N/mi d .cot θ $(\theta = 45^{\circ})$. | 750 0.36 0.45 0.57 0.61 0.65 0.71 1.516 0.00 | 2
A _{sv} /S | 0.00 0.37 INVALID 274 N/A 0.42 376 VALID 1.32 2792 22.0 314 | N/mm² N/mm² N/mm² 0.60 kN 0.37 mm²/mm kN 4.48 mm²/mm kN o mm² | 2(1), cl. 2(5), cl. 2(5), cl. cl.6.2.1(3(3), cl. cl.6.2.3(cl.6.2.3(cl.6.2.3(| | 0.25% 0.50% 0.50% 0.75% 1.00% 1.25% 2.00% k Table 8.3 f _{ck} (N/m Modifica Check v _d 5.8 Check v _d 3.4.5.1 Sid.3.4.5.1 Area prov. Fried A _{sv,pl} | $\begin{array}{c} & & \\ & \leq 200 \\ & 0.54 \\ & 0.59 \\ & 0.68 \\ & 0.75 \\ & 0.80 \\ & 0.85 \\ & 0.94 \\ & 2.000 \\ \\ & & $ | $\sigma_{cp} = F/b_w$ of slabs without shape s | $h \le 0.2f_{cd} =$ lear reinforcement Effective depth 300 350 0.47 0.45 0.54 0.52 0.62 0.59 0.68 0.65 0.73 0.71 0.78 0.75 0.85 0.82 1.816 1.75 Infactor 0 35 0 1.05 Inks (mircity 2d/a _V .V links (mircity 2d/a _V .V s (87f _{yV}), f _{yV} ≤ S) _{nom} .(0.87 S +A _{SV,prov,t} / = 22° ≤ 0 ion links in the | 10.2α _{cc} .f _{ck/} 10.2α _{cc} .f _{ck/} 10.2α _{cc} .f _{ck/} 10.2α _{cc} .f _{ck/} 10.43 10.51 10.58 10.64 10.69 10.73 10.80 10.73 10.80 10.73 10.80 10.64 10.70 10.70 10.80 10.64 10.70 10.80 | Class C30/3 500 0.40 0.48 0.55 0.61 0.66 0.70 0.77 1.632 50 4 1.19 ents) $f_{ck} \le 50I$ $f_{yv} \le 600$ $f_{yv} > 0.90$ $f_{yv} > 0.90$ | 7 concret 600 0.38 0.47 0.53 0.59 0.63 0.67 1.577 N/mm A_{sv}/S $_{v} \le 600$ 0N/mi d .cot θ $(\theta = 45^{\circ})$. | 750 0.36 0.45 0.57 0.61 0.65 0.71 1.516 0.00
0.00 | 2
A _{sv} /S | 0.00 | N/mm² N/mm² N/mm² 0.60 kN 0.37 mm²/mm kN mm²/mm kN mm²/mm | 2(1), cl. 2(5), cl. 2(5), cl. cl.6.2.1(2(1), cl. cl.6.2.3(cl.6.2.3(cl.6.2.3(cl.6.2.3(| | 0.25% 0.50% 0.50% 0.75% 1.00% 1.25% 1.50% 2.00% k Table 8.3 f _{ck} (N/m Modifica Check V _d 5.8 Check V _d 1.3.4.5.1 J.3.4.5.1 J. J | 0.54 0.54 0.59 0.68 0.75 0.80 0.85 0.94 | $\sigma_{cp} = F/b_w$ of slabs without shape s | $h \le 0.2f_{cd} =$ lear reinforcement Effective depth 300 350 0.47 0.45 0.54 0.59 0.68 0.65 0.73 0.71 0.78 0.75 0.85 0.82 1.816 1.75 Infactor 0 35 Infactor 0 35 Infactor | 10.2α _{cc} .f _{ck/} 10.2α _{cc} .f _{ck/} 10.2α _{cc} .f _{ck/} 10.2α _{cc} .f _{ck/} 10.43 10.58 10.64 10.69 10.73 10.80 10.64 10.707 11.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.15 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.15 1.10 1.14 1.10 1.14 1.10 1.15 1.10 1 | Class C30/3 500 0.40 0.48 0.55 0.61 0.66 0.70 0.77 1.632 50 4 1.19 ents) $f_{ck} \le 50I$ $f_{yv} \le 600$ $f_{yv} > 0.90$ $f_{yv} > 0.90$ $f_{yv} > 0.90$ $f_{yv} > 0.90$ | 7 concret 600 0.38 0.47 0.53 0.63 0.67 0.74 1.577 N/mm A _{sv} /S) ,≤600 ON/mid.cotθ ((θ=45°). A _{sv} ,prov | 750 0.36 0.45 0.57 0.61 0.65 0.71 1.516 | 2
A _{sv} /3 | 0.00 0.00 0.00 0.37 INVALID 274 N/A 0.42 376 VALID 1.32 2792 22.0 314 3.14 42% | N/mm² N/mm² N/mm² 0.60 kN 0.37 mm²/mm kN 4.48 mm²/mm kN o mm² mm²/mm | 2(1), cl. 2(5), cl. 2(5), cl. cl.6.2.1(3(3), cl. cl.6.2.3(cl.6.2.3(cl.6.2.3(| | 0.25% 0.50% 0.50% 0.75% 1.00% 1.25% 1.50% 2.00% k Table 8.3 f _{ck} (N/m Modifica Tinimum s Check V _d 5.8 Check V _d 1.3.4.5.1 J.3.4.5.1 J.3.4.5.1 J. J | 0.54 0.54 0.59 0.68 0.75 0.80 0.85 0.94 | $\sigma_{cp} = F/b_w$ of slabs without shape s | $h \le 0.2f_{cd} =$ lear reinforcement Effective depth 300 350 0.47 0.45 0.54 0.52 0.62 0.59 0.68 0.65 0.73 0.71 0.78 0.75 0.85 0.82 1.816 1.75 Infactor 0 35 0 1.05 Inks (mircity 2d/a _V .V links
(mircity 2d/a _V .V s (87f _{yV}), f _{yV} ≤ S) _{nom} .(0.87 S +A _{SV,prov,t} / = 22° ≤ 0 ion links in the | 10.2α _{cc} .f _{ck/} 10.2α _{cc} .f _{ck/} 10.2α _{cc} .f _{ck/} 10.2α _{cc} .f _{ck/} 10.43 10.58 10.64 10.69 10.73 10.80 10.64 10.707 11.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.15 1.10 1.14 1.10 1.14 1.10 1.14 1.10 1.15 1.10 1.14 1.10 1.14 1.10 1.15 1.10 1 | Class C30/3 500 0.40 0.48 0.55 0.61 0.66 0.70 0.77 1.632 50 4 1.19 ents) $f_{ck} \le 50I$ $f_{yv} \le 600$ $f_{yv} > 0.90$ $f_{yv} > 0.90$ $f_{yv} > 0.90$ $f_{yv} > 0.90$ | 7 concret 600 0.38 0.47 0.53 0.63 0.67 0.74 1.577 N/mm A _{sv} /S) ,≤600 ON/mid.cotθ ((θ=45°). A _{sv} ,prov | 750 0.36 0.45 0.57 0.61 0.65 0.71 1.516 | 2
A _{sv} /3 | 0.00 0.00 0.00 0.37 INVALID 274 N/A 0.42 376 VALID 1.32 2792 22.0 314 3.14 42% | N/mm² N/mm² N/mm² 0.60 kN 0.37 mm²/mm kN 4.48 mm²/mm kN o mm² mm²/mm | 2(1), cl. 2(5), cl. 2(5), cl. cl.6.2.1(2(1), cl. cl.6.2.3(cl.6.2.3(cl.6.2.3(cl.6.2.3(| | P1 = A _s /b 0.25% 0.50% 0.50% 0.50% 1.25% 1.00% 1.25% 1.50% 2.00% k Modifica | $\begin{array}{c} & & \\ & \leq 200 \\ & 0.54 \\ & 0.59 \\ & 0.68 \\ & 0.75 \\ & 0.80 \\ & 0.85 \\ & 0.94 \\ & 2.000 \\ \\ & & $ | $\sigma_{cp} = F/b_w$ of slabs without shape | $h \le 0.2f_{cd} =$ lear reinforcement Effective depth 300 350 0.47 0.45 0.54 0.59 0.68 0.65 0.73 0.71 0.78 0.75 0.85 0.82 1.816 1.75 Infactor 0 35 Infactor 0 35 Infactor | 10.2α _{cc} .f _{ck/} 10.2α _{cc} .f _{ck/} 10.2α _{cc} .f _{ck/} 10.43 10.58 10.64 10.69 10.73 10.80 10.64 10.70 11.10 11.14 11.14 | 500 0.40 0.48 0.55 0.61 0.66 0.70 0.77 1.632 500 4 1.19 cotθ, f _{yv} ≤600 f _{yv}).0.9c d/V _{Rd,max} A _{sv,prov} +A ctural im | 600 0.38 0.47 0.53 0.59 0.63 0.67 0.74 1.577 N/mm A _{sv} /S) A _{sv} /S) A _{sv} , prov | 750 0.36 0.45 0.57 0.61 0.65 0.71 1.516 | 2
A _{sv} /S
00N/ | 0.00 0.37 INVALID 274 N/A 0.42 376 VALID 1.32 2792 22.0 314 3.14 42% ortance, it r | N/mm² N/mm² N/mm² 0.60 kN 0.37 mm²/mm kN 4.48 mm²/mm kN mm²/mm anay be | 2(1), cl. 2(5), cl. 2(5), cl. cl.6.2.1(2(1), cl. cl.6.2.3(cl.6.2.3(cl.6.2.3(cl.6.2.3(| | | | | | | | 101 | b No. | Sheet No. | | Rev. | |---
--	---	--
--	--	--
$\begin{aligned} &f_c \leq 70, \\ &led (a) \\ &f_c \leq 70, \\ &led (b) \\ &f_c \leq 70, \\ &led (c) \\ &f_c \leq 70, \\ &led (c) \\ &f_c \leq 70, \end{aligned}$	$\phi V_c = \frac{N/mm^2}{\phi V_c} N$	339 339 373 528 weight ▼
cl.2 5.5.1, cl.2 5.5.1, cl.2 5.2.2, cl.2 cl.9.6.3. 5.5.1, cl. cl.9.6.3. 5.10.5, cl.		Least of and Check v _d (2(3) cl.3.2.2(3) Check v _d cl.3.2.2(3)
cl. cl.9.6.3. 5.10.5, cl. 1.22.5.10 5, cl.9.4.3 1.20.5.3,		
sir ided by sing	r and torsion utilisate and torsion utilisate torsion lies torsion lies torsion lies torsion lies are also and to the lies are also al	on links link leg > .
The demode		
values in		
(flanged),	, b _w	
--	---	--
Consulting		
1.25
0.80
0.50
0.15
1.25
▼
200
785
inforded µ | nmm ² mm ² mm mm ² /n cement | 0.15
0.09
0.09
55 %. | T.32 | 1 | | | Monolith construct Surface Surface NOTE For Concrete has Ultimate low Length of Provided to Note reinforcrossing the they are for the surface | Type of she nic tion type 1 type 2 or construction v cond consta ongitudinal Surface ty shear plane ransverse r orcement plane | with lightweight ant, k ₁ shear strest pe | ss limi Monolit ent pe coexi ed to | N/mm² 0.90 0.50 0.30 ate concrete r unit lenistent bei | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 | N/6 .90 .63 .38 Ae | given in the | 1.25
0.75
0.45
this tal | r concrete 30 / mm² / mm² / mear re | 1.25
0.80
0.50
0.15
1.25
▼
200
785
inforded µ | M/mm² N/mm² mm² mm²/n | 0.15
0.09
0.09
55 %. | T.32 | 1 | | Longitudin | Monolith construct Surface Surface Surface NOTE For Concrete to Ultimate low Length of Provided to Note reinforcrossing they are for Characteria | Type of she nic tion type 1 type 2 por construction v cond consta ongitudinal Surface ty shear plane ransverse r orcement plane the shear plane | with lightweight ant, k ₁ shear stres pe e, L _s = h _f reinforceme rovided for ane, provid ed; ch of reinfor | ss limi Monolit ent pe coexi ed to | 20 N/mm ² 0.90 0.50 0.30 ate concrete it, v ₁ chic construit r unit lentistent bette resist verent, f _y \leq | 0.00.00.00.00.00.00.00.00.00.00.00.00.0 | N/m.90 .63 .38 alues A _e g eft I sho | given in the | 1.25
0.75
0.45
this tal | r concrete 30 (mm² concrete should concern reconcrete concern reconcrete concern reconcern recon | 1.25
0.80
0.50
0.15
1.25
▼
200
785
inforded µ | nmm ² mm ² mm mm ² /n cement | 0.15
0.09
0.09
55 %. | T.32 | 2.3 | | Longitudin | Monolith construct Surface Surface Surface NOTE For Concrete to Ultimate low Length of Provided to Note reinforcrossing they are for Characteria | Type of she nic tion type 1 type 2 por construction v pond consta pngitudinal Surface ty shear plane ransverse r preement plane the shear plane ully anchore stic strengt | with lightweight ant, k ₁ shear stres pe e, L _s = h _f reinforceme rovided for ane, provid ed; ch of reinfor | ss limi Monolit ent pe coexi ed to | 20 N/mm ² 0.90 0.50 0.30 ate concrete it, v ₁ chic construit r unit lentistent bette resist verent, f _y \leq | 0.00.00.00.00.00.00.00.00.00.00.00.00.0 | N/m.90 .63 .38 alues A _e g eft I sho | given in the | 1.25
0.75
0.45
this tal | r concrete 30 (mm² concrete should concern reconcrete concern reconcrete concern reconcern recon | 1.25
0.80
0.50
0.51
1.25
200
785
iinforded µ | nmm ² mm ² mm mm ² /n cement | 0.15
0.09
0.09
55 %. | T.3. T.3. Cl.7.4. | 2.3 | | Required r | Monolith construct Surface Surface NOTE For Concrete the Ultimate low Length of Provided to Note reinforcrossing the Characterial shear for cominal transport to the component transport to the component transport to the construction to the construction of the construction to the construction of t | Type of she nic tion type 1 type 2 por construction v cond consta congitudinal Surface ty shear plane ransverse r corcement plane the shear plane aully anchore stic strengt ree limit per | with lightweight ant, k ₁ shear stres pe e, L _s = h _f reinforceme rovided for ane, provid ed; ch of reinfor r unit lengt | ss limi Monolit ent pe coexi ed to h utili | N/mm ² 0.90 0.50 0.30 ate concrete it, v_1 chic construit r unit len istent be resist ve ent, $f_y \leq$ isation, v_1 unit leng | uction ngth, ending ertical 460N V ₁ /V _{1,1} tth, 0. | N/m .90 .63 .38 allues A _e g effl she | given in the sear, minutes are sear sear sear sear sear sear sea | 1.25
0.75
0.45
this tal | r concrete 30 / mm² ble should (1) / mear rece include 6 | 1.25
0.80
0.50
0.50
1.25
200
785
iinforded µ | nmm ² mm ² mm mm ² /n cement | 0.15
0.09
55 %. | T.3. T.3. Cl.7.4. | 2.3 | | Required r | Monolith construct Surface Surface NOTE For Concrete the Ultimate low Length of Provided to Note reinforcrossing the Characterial shear for cominal transport to the component transport to the component transport to the construction to the construction of the construction to the construction of t | Type of she nic tion type 1 type 2 por construction v cond consta congitudinal Surface ty shear plane ransverse r corcement plane the shear pla ully anchore stic strengt | with lightweight ant, k ₁ shear stres pe e, L _s = h _f reinforceme rovided for ane, provid ed; ch of reinfor r unit lengt | ss limi Monolit ent pe coexi ed to h utili | N/mm ² 0.90 0.50 0.30 ate concrete it, v_1 chic construit r unit len istent be resist ve ent, $f_y \leq$ isation, v_1 unit leng | uction ngth, ending ertical 460N V ₁ /V _{1,1} tth, 0. | N/m .90 .63 .38 allues A _e g effl she | given in the sear, minutes are sear sear sear sear sear sear sea | 1.25
0.75
0.45
this tal | r concrete 30 / mm² ble should (1) / mear rece include 6 | 1.25
0.80
0.50
0.50
1.25
200
785
iinforded µ | nm mm²/n mm²/n cement | 0.15
0.09
55 %. | 7.3.
7.3.
7.3. | 2.3 | | Required r | Monolith construct Surface Surface NOTE For Concrete the Ultimate low Length of Provided to Note reinforcrossing the Characterial shear for cominal transport to the component transport to the component transport to the construction to the construction of the construction to the construction of t | Type of she nic tion type 1 type 2 por construction v cond consta congitudinal Surface ty shear plane ransverse r corcement plane the shear plane aully anchore stic strengt ree limit per | with lightweight ant, k ₁ shear stres pe e, L _s = h _f reinforceme rovided for ane, provid ed; ch of reinfor r unit lengt | ss limi Monolit ent pe coexi ed to h utili | N/mm ² 0.90 0.50 0.30 ate concrete it, v_1 chic construit r unit len istent be resist ve ent, $f_y \leq$ isation, v_1 unit leng | uction ngth, ending ertical 460N V ₁ /V _{1,1} tth, 0. | N/m .90 .63 .38 allues A _e g effl she | given in the sear, minutes are sear sear sear sear sear sear sea | 1.25
0.75
0.45
this tal | r concrete 30 / mm² ble should (1) / mear rece include 6 | 1.25
0.80
0.500
be received a series of the | nm mm²/n mm²/n cement | 0.15
0.09
55 %. | T.3. T.3. Cl.7.4. | 2.3 | | Required r | Monolith construct Surface Surface NOTE For Concrete the Ultimate low Length of Provided to Note reinforcrossing the Characterial shear for cominal transport to the component transport to the component transport to the construction to the construction of the construction to the construction of t | Type of she nic tion type 1 type 2 por construction v cond consta congitudinal Surface ty shear plane ransverse r corcement plane the shear plane aully anchore stic strengt ree limit per | with lightweight ant, k ₁ shear stres pe e, L _s = h _f reinforceme rovided for ane, provid ed; ch of reinfor r unit lengt | ss limi Monolit ent pe coexi ed to h utili | N/mm ² 0.90 0.50 0.30 ate concrete it, v_1 chic construit r unit len istent be resist ve ent, $f_y \leq$ isation, v_1 unit leng | uction ngth, ending ertical 460N V ₁ /V _{1,1} tth, 0. | N/m .90 .63 .38 allues A _e g effl she | given in the sear, minutes are sear sear sear sear sear sear sea | 1.25
0.75
0.45
this tal | r concrete 30 / mm² ble should (1) / mear rece include 6 | 1.25
0.80
0.500
be received a series of the | nm mm²/n mm²/n cement | 0.15
0.09
55 %. | T.3. T.3. Cl.7.4. | 2.3 | | Required r | Monolith construct Surface Surface NOTE For Concrete the Ultimate low Length of Provided to Note reinforcrossing the Characterial shear for cominal transport to the component transport to the component transport to the construction to the construction of the construction to the construction of t | Type of she nic tion type 1 type 2 por construction v cond consta congitudinal Surface ty shear plane ransverse r corcement plane the shear plane aully anchore stic strengt ree limit per | with lightweight ant, k ₁ shear stres pe e, L _s = h _f reinforceme rovided for ane, provid ed; ch of reinfor r unit lengt | ss limi Monolit ent pe coexi ed to h utili | N/mm ² 0.90 0.50 0.30 ate concrete it, v_1 chic construit r unit len istent be resist ve ent, $f_y \leq$ isation, v_1 unit leng | uction ngth, ending ertical 460N V ₁ /V _{1,1} tth, 0. | N/m .90 .63 .38 allues A _e g effl she | given in the sear, minutes are sear sear sear sear sear sear sea | 1.25
0.75
0.45
this tal | r concrete 30 / mm² ble should (1) / mear rece include 6 | 1.25
0.80
0.500
be received a series of the | nm mm²/n mm²/n cement | 0.15
0.09
55 %. | T.3. T.3. Cl.7.4. | 2.3 | | Required r | Monolith construct Surface Surface NOTE For Concrete the Ultimate low Length of Provided to Note reinforcrossing the Characterial shear for cominal transport to the component transport to the component transport to the construction to the construction of the construction to the construction of t | Type of she nic tion type 1 type 2 pond construction v pond construction v pond type 2 pond construction v pond type and | with lightweight ant, k ₁ shear stres pe e, L _s = h _f reinforceme rovided for ane, provid ed; ch of reinfor r unit lengt | ss limi Monolit ent pe coexi ed to h utili | N/mm ² 0.90 0.50 0.30 ate concrete it, v_1 chic construit r unit len istent be resist ve ent, $f_y \leq$ isation, v_1 unit leng | uction ngth, ending ertical 460N V ₁ /V _{1,1} tth, 0. | N/m .90 .63 .38 allues A _e g effl she | given in the sear, minutes are sear sear sear sear sear sear sea | 1.25
0.75
0.45
this tal | r concrete 30 / mm² ble should (1) / mear receinclude 6 | 1.25
0.80
0.500
be received a series of the | nm mm²/n mm²/n cement | 0.15
0.15
0.09
55 %. | T.3. T.3. Cl.7.4. | 2.3 | | Required r | Monolith construct Surface Surface NOTE For Concrete the Ultimate
low Length of Provided to Note reinforcrossing the Characterial shear for cominal transport to the component transport to the component transport to the construction to the construction of the construction to the construction of t | Type of she nic tion type 1 type 2 pond construction v pond construction v pond type 2 pond construction v pond type and | with lightweight ant, k ₁ shear stres pe e, L _s = h _f reinforceme rovided for ane, provid ed; ch of reinfor r unit lengt | ss limi Monolit ent pe coexi ed to h utili | N/mm ² 0.90 0.50 0.30 ate concrete it, v_1 chic construit r unit len istent be resist ve ent, $f_y \leq$ isation, v_1 unit leng | uction ngth, ending ertical 460N V ₁ /V _{1,1} tth, 0. | N/m .90 .63 .38 allues A _e g effl she | given in the sear, minutes are sear sear sear sear sear sear sea | 1.25
0.75
0.45
this tal | r concrete 30 / mm² ble should (1) / mear receinclude 6 | 1.25
0.80
0.500
be received a series of the | nm mm²/n mm²/n cement | 0.15
0.15
0.09
55 %. | T.3. T.3. Cl.7.4. | 2.3 | | Required r | Monolith construct Surface Surface NOTE For Concrete the Ultimate low Length of Provided to Note reinforcrossing the Characterial shear for cominal transport to the component transport to the component transport to the construction to the construction of the construction to the construction of t | Type of she nic tion type 1 type 2 pond construction v pond construction v pond type 2 pond construction v pond type and | with lightweight ant, k ₁ shear stres pe e, L _s = h _f reinforceme rovided for ane, provid ed; ch of reinfor r unit lengt | ss limi Monolit ent pe coexi ed to h utili | N/mm ² 0.90 0.50 0.30 ate concrete it, v_1 chic construit r unit len istent be resist ve ent, $f_y \leq$ isation, v_1 unit leng | uction ngth, ending ertical 460N V ₁ /V _{1,1} tth, 0. | N/m .90 .63 .38 allues A _e g effl she | given in the sear, minutes are sear sear sear sear sear sear sea | 1.25
0.75
0.45
this tal | r concrete 30 / mm² ble should (1) / mear receinclude 6 | 1.25
0.80
0.500
be received a series of the | nm mm²/n mm²/n cement | 0.15
0.15
0.09
55 %. | T.3. T.3. Cl.7.4. | 2.3 | | Required r | Monolith construct Surface Surface NOTE For Concrete the Ultimate low Length of Provided to Note reinforcrossing the Characterial shear for cominal transport to the component transport to the component transport to the construction to the construction of the construction to the construction of t | Type of she nic tion type 1 type 2 pond construction v pond construction v pond type 2 pond construction v pond type and | with lightweight ant, k ₁ shear stres pe e, L _s = h _f reinforceme rovided for ane, provid ed; ch of reinfor r unit lengt | ss limi Monolit ent pe coexi ed to h utili | N/mm ² 0.90 0.50 0.30 ate concrete it, v_1 chic construit r unit len istent be resist ve ent, $f_y \leq$ isation, v_1 unit leng | uction ngth, ending ertical 460N V ₁ /V _{1,1} tth, 0. | N/m .90 .63 .38 allues A _e g effl she | given in the sear, minutes are sear sear sear sear sear sear sea | 1.25
0.75
0.45
this tal | r concrete 30 / mm² ble should (1) / mear receinclude 6 | 1.25
0.80
0.500
be received a series of the | nm mm²/n mm²/n cement | 0.15
0.15
0.09
55 %. | T.3. T.3. Cl.7.4. | 2.3 | | Required r | Monolith construct Surface Surface NOTE For Concrete the Ultimate low Length of Provided to Note reinforcrossing the Characterial shear for cominal transport to the component transport to the component transport to the construction to the construction of the construction to the construction of t | Type of she nic tion type 1 type 2 pond construction v pond construction v pond type 2 pond construction v pond type and | with lightweight ant, k ₁ shear stres pe e, L _s = h _f reinforceme rovided for ane, provid ed; ch of reinfor r unit lengt | ss limi Monolit ent pe coexi ed to h utili | N/mm ² 0.90 0.50 0.30 ate concrete it, v_1 chic construit r unit len istent be resist ve ent, $f_y \leq$ isation, v_1 unit leng | uction ngth, ending ertical 460N V ₁ /V _{1,1} tth, 0. | N/m .90 .63 .38 allues A _e g effl she | given in the sear, minutes are sear sear sear sear sear sear sea | 1.25
0.75
0.45
this tal | r concrete 30 / mm² ble should (1) / mear receinclude 6 | 1.25
0.80
0.500
be received a series of the | nm mm²/n mm²/n cement | 0.15
0.15
0.09
55 %. | T.3. T.3. Cl.7.4. | 2.3 | | | | <u> </u> | | | | 7-1-61 | Cl. · · · | | Тъ | |-------------------|--------------------------------|--------------------------------|---|---------------------------------|--------------------------------------|--------------------------|---------------------|--------------------|------------| | CON | SULTING | Engineerin | g Calculatio | n Sheet | _ | Job No. | Sheet No. | | Rev. | | | NEERS | | | 000 | • | jXXX |] - | 25 | Member/Location | | | | | Job Title | Member D | esign - Reir | nforced Con | crete Be | eam BS8110, | Drg. Ref. | | | | | Member D | esign - RC | Beam | | | | Made by XX | Date 1 | 6/1/2024 | 1 Chd. | | | | | | | | | | | <u>EC2</u> | | Longitud | inal Shear | Within W | eb Rectang | gular or | · Flanged Be | am (EC2) | | | | | | | | | | | | | | | | l onaitudir | ial shear str | ess. Ve | $_{di} = \beta V_{Ed} /$ | $(z b_i)$ | | | 1.53 | N/mm ² | cl.6.2.5 | | | Ratio, $\beta =$ | | . , | , , | | | 1.0 | | cl.6.2.5 | | | | | ce (average | d) V= | = \/ .*/2 | | 585 | | cl.6.2.5 | | | Lever arm | | c (average | u), VEd - | - V _d /2 | | 0.763 | | cl.6.2.5 | | | | | ithin wah f | or simpl | city, z = d - i | h /2: | 0.703 | 111 | C1.0.2.3 | | | ! | ne interface | | ui siiripi | $\frac{1000}{1}$ | | F00 | no no | 0.625 | | | Width of th | | ε, D _i – D _w | | | | 500 | mm | cl.6.2.5 | | La caracter altra | -1 -1 | | | | | | 2.40 | 2 | | | Longituair | al shear str | | | |) = 0.F. f | 1 | 3.10 | N/mm ² | | | | | | | | α) \leq 0,5 ν f_{cd} | <u></u> | | | cl.6.2.5 | | | | | σ_n is negat | ive (ten: | sion); | | | | cl.6.2.5 | | | - | coefficient | - | | Indented | ▼ | 0.500 | | cl.6.2.5 | | | | coefficient | | | Indented | | 0.9 | | cl.6.2.5 | | | | | | teel, plas | tic or specially p | orepared wood | en moulds: | | | | | | o 0,10 and μ | | face or a | free surface lef | t without furth | or treatment | | | | | | ion: <i>c</i> = 0,20 | | iace, or a | iree suriace iei | t without further | er treatment | | | | | Rough: a s | urface with a | t least 3 mm r | | at about 40 mr | | | | | | | | | egate or othe | r methods | s giving an equi | valent behavio | ur: <i>c</i> = 0,40 | | | | | and $\mu = 0.7$
Indented: a | | indentations | complying | g with Figure 6.9 | 9: c = 0.50 an | $d \mu = 0.9$ | | | | | | sile strengt | | ,, | , | 1 | | N/mm ² | | | | Design ten | _ | | ماهندد | 1 0 | | 1.29 | IN/ MM | -1216 | | | | | $f_{\text{ctk},0,05} / \gamma_{\text{C}}$ | with | $\alpha_{\rm ct}$ =1.0, γ | / _c =1.5 | 1 0 1 | 2 | cl.3.1.6 | | | | $f_{\text{ctk};0,05} = 0,$ | | 1 | 101 /11/6 | 1011 > 050/ | | N/mm ² | T.3.1 | | | | | | $f_{ctm}=2$ | 12·In(1+(f _{cm} / | 10)) > C50/ | | N/mm ² | T.3.1 | | | | $f_{\rm cm} = f_{\rm ck} + 8$ | | | | | | N/mm ² | T.3.1 | | | | | | | th of concrete | | | N/mm ² | T.3.1 | | | | | | | of concrete, f | | 35 | N/mm ² | T.3.1 | | | | | | l shear i | nterface, σ_n = | = 0 | 0.00 | N/mm ² | | | | Reinforcen | nent ratio, | $\rho = A_s / A_i$ | | | | 0.006 | | cl.6.2.5 | | | | | | $A_s = A$ | sv,prov/S + Asv | ,,prov,t/St | 3142 | mm ² /m | | | | | Note that | the area of | reinforc | ement crossii | ng the shear | interface i | may | cl.6.2.5 | | | | include ord | dinary shear | r reinfor | cement with | adequate ar | nchorage at | both | | | | | | e interface; | | | | | | | | | | | e joint, $A_i =$ | | | | 500000 | mm²/m | | | | Design vie | | | | $f_{yd} = f_{yv}/\gamma_S, \gamma_S$ | | | N/mm ² | .2.4, cl.3 | | | | | $\alpha = 90.0$ | | yd — Tyv/ YS/ YS | 1.10, 1 _{yv} 20 | | degrees | cl.6.2.5 | | | | | | | | | | | u.u.2.3 | | | Design cor | | trength, f _{cd} | | . 10 | 1 5 | 19 | N/mm ² | -1216 | | | Ct | $f_{\rm cd} = \alpha_{\rm cc}$ | | with | | | | - | cl.3.1.6 | | | Strength r | _ | _ | crete cr | acked in shea | ar, v | 0.533 | | <u> </u> | | | | $\nu = 0.6 \int 1 -$ | <u>f_{ck}</u> | | | | | | cl.6.2.2 | | | | _ | _ | | | | | | | | Longitudir | al shear str | ess limit ut | tilisation, $v_{\scriptscriptstyle E}$ | _{di} /v _{Rdi} | | | 49% | | OK | | | | | | | | | | | | | _ | | | | _ | 1 | 1 | 1 | I | 1 | | 1 | 1 | I . | I . | 1 | | CON | SULTING | Engineerin | n Calcula | tion Sheet | <u> </u> | Job No. | Sheet No. | | Rev. | |-------------|------------------------|--|------------------------------------|---|------------------------|--------------------------------|--------------------|--------------------|---------------| | | | Consulting | | | | jXXX | | 26 | | | ENGI | HEEKS | Consulting | Linginiee | | | J^^X | | | | | | | | | | | Member/Location | | | _ | | Job Title | Member D | esian - Reir | forced C | oncrete Bean | n BS8110. | Drg. Ref. | l . | | | | | esign - RC | | | | | Made by XX | Date 1 | 6/1/2024 | Chd. | | MCMBCI D | CSIGIT IXC | Deam | | | | | _ | 7 1 2 2 2 4 | | | 1 | | \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | . l. D | | | /DC01/ | | | <u>BS8110</u> | | Longitua | nai Snear | within we | ed Kecta | ngular or Fl | апдец веа | m (p291) | LU) | | | | | | | | | | | | | | | Longitudin | al shear sti | ress, $v_h = K$ | $L_{\rm S}$. $\Delta F_{\rm c}$ / | (b _w
.∆x) | | | 2.58 | N/mm ² | cl.5.4.7.2 | | | Change of | total comp | ression fo | orce over Δx , | $\Delta F_c = (M-0)$ |)/z | 2423 | kN | cl.5.4.7.1 | | | | Lever arm, | , Z | | | | 0.763 | m | | | | | | | within web, f | for simplicity | z = d - h | _ε /2: | | | | | Lenath un | der conside | | | ı í | , | 2500 | mm | | | | _ | | | etween the po | oint of mayi | mum desic | | ! | cl.5.4.7.2 | | | | | | tween the po | Jiii Oi Illaxii | mum uesig | | anu
T | CI.3.4.7.2 | | | - | of zero mon | | | | | | | | | | | ss distribut | | | | | 1.33 | | | | | The average | ge design si | hear stre | ss should the | n be distribi | uted in pro | portion to | the | cl.5.4.7.2 | | | vertical de | sign shear i | force dia | gram to give | the horizont | tal shear si | tress at an | y point | | | | along the | length of th | e membe | er. For UDLs, | K _s maybe | taken as 2 | .00 for sim | ply | | | | | | | ntinuous bean | | | | | | | | | | | dth (flanged), | | | | mm | | | | | | | | , ~ vv | | 300 | 1 | | | Longitudia | al choos ct. | occ limit fo | r no nom | inal / docier | vortical rain | forcomast | 2-25 | N/ 2 | 1 | | Longituain | | 1 | i iio iiom | ninal / design | | | 2.35 | N/mm ² | | | | Surface ty | pe | | Wash | ned to remove I | aitance etc | | | T.5.5 | | | | Table 5 | 5 — Doeig | n ultimate hori | izontal choor | etrosene at i | interface | | ጎ | | | | Precast unit | 3 — Desig | | | | | | | | | | rrecast unit | | Surface | type | 25 | le of in-situ cor | 40 and over | | | | 1 | | | | | N/mm ² | N/mm ² | N/mm ² | | | | Without li | nks | | cast or as-extrud | | 0.4 | 0.55 | 0.65 | | | | + | | | ished, screeded o | ~ . | | 0.65 | 0.75 | | | | - | | | shed to remove la
sted with retards | | 0.7 | 0.75 | 0.80 | | | | With nom: | inal links proje | | cast or as-extrud | | 1.2 | 1.8 | 2.0 | | | | into in-sit | u concrete | Bru | ished, screeded o | r rough-tampe | d 1.8 | 2.0 | 2.2 | | | | | | | shed to remove la
sted with retards | | 2.1 | 2.2 | 2.5 | | | | NOTE 1 Th | ne description "as- | | 108e cases where the | | and vibrated leav | ving a rough finis | h. The surface | | | | | | | s to be applied direct
cial roughening had | | er finishing scree | ed but not as rou | zh as would be | | | | NOTE 2 Th | - | | ers those cases in wh | - | ed surface is pro | duced direct fron | an extruding | | | | machine. | a decomination 90 | | d td" | | | of dollhousts ou | | | | | | | | d or rough-tamped" o
stent of exposing the | | where some form | or deliberate su | riace | | | | NOTE 4 Fo | r structural asses | sment purpos | es, it may be assume | d that the appropr | iate value of $\gamma_{ m m}$ | included in the t | able is 1.5. | | | | | | | | | | | | Ţ | | | al shear sti | ress limit fo | r no nom | inal / design | vertical rein | iforcement | 110% | <u> </u> | NOT OK | | .2(3) | | | | | | | | | | | Required r | nominal ver | tical reinfor | cement p | oer unit lengt | h, 0.15%b _w | | 750 | mm ² /m | cl.5.4.7.3 | | | Provided v | ertical reinf | orcemen | t per unit len | gth, A _e | | 3142 | mm²/m | | | | | A _{sv,prov} / S | | | | | | <u> </u> | | | Required r | | | | per unit lengt | h utilisation | 0.15%h | 24% | | OK | | - | | | • | ress limit for | | | | | | | NOLE UT SE | - LU U70 II | origituulildi | siicai St | I COO IIIIIIL IUI | no nominal | vertical 18 | iiiioi ceiiiei | T UI <= 10 | 7070, | | D ' ' | ! | 1 1 - 1 | | | | | | 7. | <u> </u> | | kequired o | | | ement pe | er unit length, | , A _h | | 2949 | mm²/m | | | | $A_1 = \frac{10}{100}$ | 95f _y | | | | | | cl.5. | 4.7.4, Fore | | | 1 | · · | | ≤460N/mm² | | | | | | | Required of | lesign verti | | | er unit length | | A _h /A _e | 94% | | OK | | Note UT se | et to 0% if | longitudinal | shear st | ress limit for | no design v | ertical rein | forcement | UT <= 100 |)%; | | | | _ | | | | | | | | | | | | | | | | | | † | | | | | | | | | | | 1 | | | | | | | | | | | <u> </u> | 1 | | | | | | | | | | | 1 | | | 1 | 1 | | | 1 | | ĺ | 1 | 1 | - _ | CON | SULTING | Engineerin | g Calculation | on Sh | eet | | | Job N | 0. | Sheet | No. | | | Rev. | | |------------|----------------------------------|---|---------------------------|---------------------|-------------------|---------------------|-----------|-----------|--------------|-------------------------------|----------------|--------------------|------|--------------|------------| | | | Consulting | | | | | | jXX | ίχ | | 2 | .7 | | | | | | | | | | | | | Member/L | | | | | | | | | | | | | | _ | 5004 | | | ocation | | | | | | | | Job Title | | | nforced Cor | icrete | Beam | 1 BS81 | 10, | Drg. Ref. | | D-4- | | | | Ob at | | | Member D | esign - RC | Beam | ı | | | | | Made by | XX | Date | 10 | 6/1/20 |)24 | | | | | | | | | | | | | | | | | | <u>BS540</u> | <u>0-4</u> | | Longitudi | nal Shear | Within We | eb Rectan | gular | or Fla | anged | Bea | am (B | S540 | 00-4) | Longitudin | | | length, V ₁ | | | | | <u> </u> | | | | kN/m | | | | | | Change of | total comp | ression for | ce ove | er ∆x, | $\Delta F_c =$ | (M-C) |))/z | | | 423 | | | | | | | | Lever arm | | | | | | | | | 763 | m | | | | | | | Note if neu | ıtral axis w | ithin 1 | web, f | or sim | plicit | y, z = | <u>d – h</u> | _f /2; | | | | | | | | | der conside | | | | | | | | | | mm | | | | | | Note ∆x is | the beam | length betv | veen | the po | int of | max | imum | desig | n mon | ent | and | | | | | | the point o | of zero mon | nent; | | | | | | | | | | | | | | | | | ion factor, | | | | | | | | 33 | | | | | | | The longitu | udinal shea | r should be | calcu | ılated | per ur | it le | ngth. F | or U | DLs, K | _s m | ay be | | cl.7.4. | 2.3 | | | taken as 2 | .00 for sim | ply support | ed be | eams, | 1.33 f | or co | ntinuo | us be | eams a | nd 2 | 2.00 | | | | | | | ver beams; | | | | | | | | | | | | | | | | Width (rec | tangular) o | r web width | n (flar | nged), | b_w | | | | | 500 | mm | Longitudin | al shear foi | ce limit per | r unit lengtl | h, V _{1,1} | limit | | | | | 10 | 637 | kN/m | | | | | | V. should | not excee | d the lesse | r of th | he foll | owine | ,. | | | | | | | | | | | | | u tile lesse. | r or u | ne ion | OWINE | ,- | (a) | | 2 | 625 | kN/m | | cl.7.4. | 2.3 | | | a) k ₁ f _c | | | | | | | (b) | | 1 | 637 | kN/m | | cl.7.4. | 2.3 | | | b) $v_1 L_s$ | $+0.7A_{ m e}f_{ m y}$ | | | | | | | | | | | | | | | | Table | 31 — Ultim | ate longitue | dinal | shear | stress, | v_1 , a | nd val | ues o | $\mathbf{f} k_1 \mathbf{for}$ | con | nposite | men | nbers | | | | | Type of she | ar plane | | I | Longitu | linal s | shear str | ess for | r concret | e gra | de | | k_1 | | | | | -,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | 20 | 0 | | 25 | | 30 | 40 0 | or more | | | \bot | | | | | | | N/m | ım² | N/ | mm^2 | N/ | mm ² | N | l/mm ² | | | | | | Monolith | _ | | | 0.90 | | 0.90 | | 1.25 | | 1.25 | | 0.15 | | | | | Surface | | | | 0.50 | | 0.63 | | 0.75 | | 0.80 | | 0.15 | | | | | Surface | | | | 0.30 | | 0.38 | | 0.45 | | 0.50 | | 0.09 | | | | | | | vith lightweight | aggreg | | | | given in | | ole should | | | | | + | Concrete b | ond consta | int, k ₁ | | | | | | | (|).15 | | | T.3 | 1 | | | Ultimate lo | ngitudinal | shear stres | s limi | t, ν ₁ | | | | | 1 | 25 | N/mm | 2 | T.3 | 1 | | | | Surface ty | pe N | /lonolit | hic cons | struction | ı | | | | ▼ | | | T.3 | 1 | | | Length of | shear plane | e_{s} , $L_{s} = b_{w}$ | | | | | | | | 500 | mm | | | | | | Provided v | ertical reinf | forcement p | er ur | nit leng | gth, A | <u>.</u> | | | 3 | 142 | mm²/r | n | | | | | Note $A_e =$ | A sv,prov / S | $S + A_{sv,prov,t}$ | $/S_t$ | ; | | | | | | | | | | | | | Note reinfo | orcement p | rovided for | coexi | stent | bendir | ig ef | fects a | nd st | near re | infor | cemen | t | cl.7.4. | 2.3 | | | crossing th | ne shear pla | ane, provide | ed to | resist | vertica | al sh | ear, m | ay be | e includ | led p | orovide | d | | | | | they are fu | ılly anchore | ed; | | | | | | | | | | | | | | | | | h of reinfor | | | | | ım² | | | 460 | N/mm | 2 | | | | Longitudin | al shear foi | ce limit pe | r unit lengtl | h utili | sation | , V ₁ /V | 1,limit | | | 7 | 9% | | | ОК | cement per | | | | | | | | | mm ² /r | n | cl.7.4. | | | Required r | ominal ver | tical reinfor | cement per | r unit | length | n utilis | atior | າ, 0.15 | $%L_{s}/$ | 2 | 4% | | | ОК | | | Note UT se | et to 0% if | longitudina | shear forc | e limi | t per u | ınit lei | ngth | for no | nom | inal ve | rtica | l reinfo | rcer | nent | | | UT <= 100 |)%; | _ | _ | | | | | _ | | _ | | | | CON | SHLTING | Engineerin | a Calculatio | on Shoot | | Job No. | Sheet No. | | Rev. | |---------------------------|---------------------------------------|--------------------------|--------------|--------------|--------------------|----------------------------------|------------------|-----------------|---------------| | | | Consulting | | JII SHEEL | | jXXX | 2 | 8 | | | 21, 01 | | | | | | Member/Location | | | | | | | | | | DC0110 | Drg. Ref. | | | | | Job Title | | esign - Reir | iforced Con | icrete Bean | 1 BS8110, | Made by XX | Date • | . /4 /2024 | Chd | | Member De | esign - RC | Beam | | | | Wilder by XX | 10 | 5/1/2024 | | | Deen Rea | m Pectan |

gular Bear | n | | | | | | <u>BS8110</u> | | - | | check is pe | | r hoth recta | ngular and | l
I flanged se | ctions ado | ntina | | | | | quations in | | | | | - | | | | | | o web ope | | | | | | | | | | | onally rest | | | | | • | | | | | Guide 2 cl | | | | | | | , | | | | | ,, | | | | | | | | | Span to de | pth ratio, s | span / h | | | | | 10.00 | | | | Applicabilit | y of deep b | eam desig | n | | | Not A | Applicable | | ОК | | Note deep | beam desig | gn is applic | able for {1. | 0 ≤ span / | ′ h ≤ 2.0 s/ | s; 1.0 ≤ sp | $an / h \le 2$. | 5 cont; | | | 0.5 ≤ spar | $h/h \leq 1.0$ | cant} (Rey | nolds cl.21. | 4.1 and CI | RIA Guide 2 | 2 cl.1.3); | | | | | | | | | | | | | | | | Concrete to | уре | | | | | Normal | weight v | | | | | | | | | | | | | | | | | diameter, ϕ | | | | | None T | mm | | | | | shear links | | | | | N/A | | | | | | norizontal s | | n a horizon | tal section, | $A_{sv,prov,h} =$ | | mm ² | | | | | ear links, S | | | | | | mm | | | | | (b _w .(S or S | | | 0.25% G25 | 50) | N/A | | N/A | | $2.\pi.\phi_{link,h}^2/4$ | 4 / (b _w .S _h) | (>0.20% G | i460; >0.2! | 5% G250) | | | N/A | % | N/A | | | | | | | | | 21/2 | 2 | 67074 | | | | ovided (dee | - | | | | - | mm ² | CIRIA | | | | cement (de | | (0.52.1 | (0.056 | C + 450N/ | N/A | % | Guide 2 | | | | cement (de | | | $c_{cu}/0.95t_{y}$ | <i>T_y ≤460N/I</i>
 | | | cl.2.6.2 | | % Min tens | sion reinfor | cement (de | ep beam) (| utilisation | | | N/A | | N/A | | All dotailin | l
g requirem | onto mot 2 | | | | | N/A | | | | All detailin | g requirem | ents met : | | | | | N/A |] | | | | | | | | Job No. | Sheet No. | | Rev. | |-------------------------|------------------------|------------------------------|----------------|---|---------------------|---------------------------|---------------------------|-------------------|---| | | | Engineerin | | on Sheet | | | | | ICV. | | ENGI | NEERS | Consulting | Engineers | | | jXXX | 2 | .9 | | | | | | | | | Member/Location | | | | | Job Title | Member D | esign - Reir | nforced Cor | ncrete Bean | n BS8110, | Drg. Ref. | | | | | Member De | | | | | • | Made by XX | Date 1 | 6/1/2024 | Chd. | | | | | | | | | | | BS8110 | | Deep Bea | m Bendin | g | | | | | | | Reynolds | | Design ber | nding mom | ent, M | | | | | N/A | kNm | | | Toncion ct | nal (daan h | l
eam), A _{s,db} | _ 1 75M / | [f h] f < 1 | 60N/mm ² | | N/A | mm ² | T.148 | | | | | | | | 6 v materi | ial factor 0. | | cl.21.4.1 | | | | epth, T _{zone} (: | | • | | .o x materi | N/A | | cl.21.4.1 | | | | epth, T _{zone} (| | | | | N/A | | CHETTIT | | | | ibuted over | | _{zone} from to | ension face | ; | | | cl.21.4.1 | | Note T | = (5h - si | pan _{(im}) / 20 |) s/s sag ai | nd cont sag | , (5h – 2) | (span _{lim}) , | / 20 cant ho | pa; cl. | 21.4.1 / SI | | 20116 | (/ | | | | , (- | -1 111177 | | , , , | | | Tension ste | eel area pro | ovided (dee | p beam) | | | | N/A | mm ² | | | | | ovided (dee | - | tilisation | | | N/A | | N/A | | | 50. u. 6u p. | | p 200) u. | | | | | | , | | Deep Bea | m Shear | | | | | | | | Reynolds | | | | | | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | Design she | ar force, V | ,
d | | | | | N/A | kN | | | | | - | nit is b w.h.i | f _c '/10 γ _m w | here f ' is | the cylinde | er comp stre | | cl.21.4.1 | | Ultimate sh | | | νν | . , , , , , , , , , , , , , , , , , , , | , - | , , , , | N/A | | N/A | | | | | | | | | | | | | Area of ten | sion steel | reinforceme | ent provide | d, A _{s prov} | | | N/A | mm ² | | | | | dge of load | | | DL @ mid | 0.625h ▼ | | mm | T.148 | | | | | | • • • • | | | from the s | l | T.148 | | Ratio a ₁ /h | | | | ,, | | | N/A | | N/A | | | re a 1/h is r | not greatly | outside ran | ae of 0.23 | to 0.70; | | | | T.148 | | | | ntal bar an | | | | ∟
¹ (h/a₁) | N/A | degrees | T.148 | | | | $k_1 = \{0.70$ | | | , 0 | (, 41) | N/A | | T.148 | | | | $k_2 = \{100 \mid$ | | | deformed b | ars} | , | N/mm ² | T.148 | | | | sile strength | | | | | | N/mm ² | T.148 | | | | deep beam | | | /
/[k₁.(h-0.3 | | N/A | | N/A | | | | orizontal she | | | | | N/A | | , | | | | | | | | | i.e. (h –T _{zon} | | | | | | s shear cap | | | | 1 | N/A | | T.148 | | | | | | | | • | ect the diag | | 772.0 | | | | | | | | | horizontal | | ! | | | 2 10 0010010 | | (= // = . | | | | | | | | Check Va | < 1.0V ₁ fo | r no horiz | ontal links | s (minor e | lements) | | N/A | | T.148 | | | | shear capac | | | | | N/A | | T.148 | | | | MAX[0,k ₁ | |).f. h 1+1 | 13.A. d | sin ² A/h· | N//A | | T.148 | | | | , ,, ,, ₁ | .,,, 0.5541 |) | z ., · s,prov · u | 0/11, | | | ,,,,,, | | Check V. | > 0.0 for (| ⊥
design hor | izontal lin | ıks | | | N/A | | T.148 | | | | and design l | | | capacity V | + V ₁ | N/A | | T.148 | | | 33 | 30019111 | | Silvar (| - Spacity Vr | 1 | | | | | Design she | ar resistan | ce (deep be | eam) utilisa | ation | | | N/A | | N/A | | | | | | | | | 1 | | | | | | | | | | | 1 | ļ | | | | | | | | | 1 | | <u> </u> | 1 | | | | I | | G | <u> </u> | T- | |-------------------------|-------------------------------|-------------------------|----------------------------|------------------------------|--|---------------------|---------------------|--------------------------|---------------------------------|----------| | CON | SULTING | Engineerin | a Calculatio | on Sheet | | Job N | 0. | Sheet No. | | Rev. | | | | | | | | jXX | X | 3 | 0 | | | | NGINEERS Consulting Engineers | | | | | | | | | | | | | | | | | Member/L | ocation | | | | | Job Title | Member D | esign - Reir | nforced Cor | ncrete Bean | n BS8110, | Drg. Ref. | | | | | | Member D | esign - RC | Beam | | | | Made by | XX | Date 10 | 6/1/2024 | Chd. | | | | | | | | | | | | BS8110 | | Deep Bea | m Bendin | g | | | | | | | | CIRIA | | - | | | | | | | | | | Guide 2 | | Design be | nding mom | ent. M | | | | | | N/A | kNm | | | | ıltimate ben | | nt limit is i | 0 12f h k | 2. | | | | | cl.2.4.1 | | | ending mor | | | cu = w · | , | | | N/A | | N/A | | Offirmate B | | Tierre demod | | | | | | Ν/Λ | | N/A | | Toncion ct | eel (deep b | oam) A | - M / [0 0 | 5f →1 f < ⁄1 | 60N/mm ² | | | N/A | mm ² | cl.2.4.1 | | | at which th | | | | | | | | mm | cl.2.4.1 | | Lever arm | | | | | o, Z | | | - | | | | , – | ! | oported, z = | | | | 1 | | | mm | cl.2.4.1 | | LF | | z = 0.2 x | | | | | | | mm | cl.2.4.1 | | - | | z = 0.4 x | | | | - | | | mm | SELF | | | eel zone de | | | | cant) | | | N/A | | cl.2.4.1 | | | eel zone de | | | | | | N/A | N/A | | cl.2.4.1 | | | eel zone de | | | | | _ | N/A | N/A | mm | cl.2.4.1 | | | to be distri | | | | ension face | ?; | | | | cl.2.4.1 | | | = 0.2h s/s | | | | | | | | | cl.2.4.1 | | Note T _{zone} | = 0.2h coi | nt hog uppe | er band 0.5 | (span _{lim} /h- | -1)A _{s,db} , 0. | 2h-0.8 | h co | nt hog lowe | er band ren | nainder; | | | | | | | | | | | | | | Tension st | eel area pro | ovided (dee | ep beam) | | | | | N/A | mm ² | | | Tension st | eel area pro | ovided (dee | p beam) ut | tilisation | | | | N/A | | N/A | | | | | | | | | | | | | | Deep Bea | m Shear | | | | | | | | | CIRIA | | - | | | | | | | | | | Guide 2 | | Design she | ear force, V | ,
d | | | | | | N/A | kN | | | | ıltimate she | | ı
nit is min{h | h. v2h | $\dots h^2 v_a k_a$ | /х.} и | ihere | - | | cl.2.4.2 | | concrete s | hear streng | th from CP | 110 T.6 ar | nd T.26 ren | laced by m | in{0.8 | f 0.5 | .{5.0.7.0} | N/mm ² } | 0 | | | the design | | | | | | | | | | | | = 1.0 for h | | | | | 1 | . 00. | N/A | 1 | cl.2.4.2 | | | hear force i | | 0.0 | | | 1 | | N/A | | N/A | | Oitiiiiate s | | | | | | | | N/A | | N/A | | Aroa of to | ncion stool | roinforcom | ont provide | d / | | | | NI/A | 2 | | | | nsion steel | | | | 51.0.11 | 0.6051 | | | mm ² | -12.42 | | | nce from e | | | | | | | | mm | cl.2.4.2 | | | DLs, concei | ntrate total | UDL at {sp | pan/4 s/s al | nd cont, sp | pan/2 c | ant} | | | cl.2.4.2 | | Ratio x _e /h | | | | | | | | N/A | | N/A | | | re x _e /h is r | | | | | <u> </u> | | | | cl.3.4.2 | | | veen horizo | | | | \mathbf{k} , $\theta = tan$ | ¹ (h/x _e |) | N/A | degrees | cl.2.4.2 | | Empirical of | coefficient, | $\lambda_1 = \{0.44$ | NWC, 0.32 | LWC} | | | | N/A | | cl.3.4.2 | | Empirical of | coefficient, | $\lambda_2 = \{0.85$ | plain round | d bars, 1.95 | deformed | bars} | | N/A | N/mm ² | cl.3.4.2 | | Number of | frows of ho | rizontal sh | ear links in | a vertical c | ross-sectio | n, n | | N/A | | | | Note the n | o. of rows | of horizonta | al shear link | ks reduced | to account | for T z | one, i | e. (h – T _{zon} | _e)/S _h ; | | | Design ho | rizontal link | s shear cap | pacity, V _r = | $100\lambda_2\Sigma A_{sv.}$ | _{prov,h} .y _r .sin | ² θ/h | | N/A | kN | cl.3.4.2 | | | ummation (| | | | | | terse | | | | | | r is calculat | | | | | | | | | • | | - | | | | | | | | | | | | Check V. | < 1.0V for | r no horizo | ntal links | (minor el | ements) | | | N/A | | cl.3.4.2 | | a | 1 | shear capac | | | | | | N/A | | cl.3.4.2 | | | l | $MAX[0, \lambda_1]$ | | | | d c |
sin ² | | | cl.3.4.2 | | | | re [100 λ_2 . | | | | prov .u.s | ,,,, | N/A | | N/A | | | ivole requi | ις [100 λ2. | A _{S,prov} .u.SII | U VIII / V | _ 0.20, | | | N/A | | N/A | | Check V | > 0.0 for a | docian ba | izontal li- | ke | | | | BI / A | | 0212 | | CHECK Vd | > 0.0 for (| | | | consolt: . \ ' | 1 37 7 | - 1 | N/A | | cl.3.4.2 | | | <u> </u> | and design | | mks snear (| capacity V _r | + V (<u></u> | ≥ λ ₁ .\ | N/A | KIN | cl.3.4.2 | | | | $= 1.3\sqrt{f_{cu}}$ | | , | | <u> </u> | | | | T.5 | | | Note requi | re [V _r + 10 | $UU \lambda_2.A_{s,pro}$ | _v .d.sin² θ/I | h]/[V _r + | <i>V</i> ∫ ≥ 0 | .20; | N/A | | N/A | | | | | | | | | | | | | | Design she | ear resistan | ce (deep b | eam) utilisa | ation | | | | N/A | | N/A | | ĺ | | | | | | | | | | 1 | | | CONSULTING Engineering Calculation Sheet | | | | | | | Job No. | | Sheet No. | | | Rev. | | | |--------------|--|---|---------------|--|--|---|---|---|---|---|--|--|--|-------------|--------------| |] | | | Consulting | | 311 3110 | | | jΧ | jXXX 42 | | | | | | | | | | | | | | | | Member/I | ocation | | | | | | | | _ | Title | | esign - Reir | nforced Cor | ncrete | Beam | BS8110 | - | | Data | | ,,,, | | Chd | | | Ме | mber D | esign - RC | Beam | | | | | Made by XX Date 16/1/202 | | | | 2024 | BS8110 | | | | Ту | pical Ir | itial Spar | ı / Effectiv | e Depth R | atios | | | | | | | | | <u>D301</u> | <u>.10</u> | | Н | Span-to | -depth rat | ios for bean | ns | | | | | | | | | | | | | Н | Condi | tion | | | | 2 | pan-to- | depth r | atio | | | | | ▮ | | | | Simply | supported | | | | | 15 | | | | | | | | | | 4 | End-ba | y | | | | | 17 | | | | | | | | | | H | Cantile | ver | | | | | 6 | | | | | | | | | | | Trans | fer bea | ams | | | | | | | | | | | | | | | merely the government of | by using sperning critically exceed with short of the shalf it's decided where V is a droom under column. Each of the design. | pth ratios fo | h tables — inforced cors 5 N/mm ement it is N/mm². I re rearrang My for sh A N/mm² My should to nd flexural rinsitu con | careful
oncrete ² (whice
advise
f we alse the content
near strenge
crete I | l consider transichever able to ssume express of cked a gth sho | deration
fer bear
is small
o limit v
a well
sion abo
2 N/mr | is need
m. From
er). If th
to 2 N.
proporti
ve so th
m ²
sideration
be cor | led. S
BS :
e sec
/mm
oned
at:
on giv
nsider | hear st
8110, v
tion is i
2. Howe
beam
ten to t
red bec | rengt
= V
not to
ever,
has a
the co
ause | th is of the connection on | often n no come ay be th, b, ction may | ner's H | <i>landl</i> | | | | . , . | | | | | | | | | | | | _ | | | | | Continu | | | 22 | | | | 17 | | | | _ | | | | | | Cantile | ver | | | 9 | | | | | 7 | | | | | | | Table (| 6: Estimate | ed depths of | insitu conc | rete si | ngle sp | an T-be | ams (60 | Omn | wide) | | | | | | | | | Spar | า | 4m | 4m | | 5m | | 6m | | 7m | | 8m | | | | | | 50 kN/m | UDL | 250n | 250mm | |)mm | 350r | 350mm | | 400mm | | 500mm | | | | | | 100 kN/m | UDL | 275m | nm | 325 | imm | 400r | 400mm 450mm | | | 575mm | | | | | | | 200 kN/m | n UDL | 325m | nm | 375 | imm | 450r | nm | 52 | :5mm | | 650 | Omm | | | | Table 7 | 7: Estimate | d depths of | insitu conci | rete sii | ngle sp | an band | -beams | (240 | 0mm w | ide) | | | | | | Ц | | Span | 1 | 6m | | 7 | m | 8n | 1 | | 9m | | 10 |)m | | | \mathbb{H} | | 50 kN/m | UDL | 250m | nm | 300 | 300mm | | 350mm | | 400mm | | 475 | imm | | | | | 100 kN/m | UDL | 300m | 300mm | | 350mm | | 425mm | | 500mm | | 575 | imm | | | \mathbb{H} | | 200 kN/m | UDL | 350m | 350mm 40 | | 00mm 4 | | 75mm 575mm | | \top | 675mm | | \top | | | -L | | | | | | | | | | | | | | | _ | | CON | CIII TING | En ala ancia | - Calaulati | Clarat | | Job No. | Sheet No. | | Rev. | |------------------------|------------|------------------------|------------------|-------------|---------------|-----------------|--------------------|------------------|--------| | ENGI | NEERS | Consulting | g Calculation | on Sheet | | jXXX | 4 | 13 | | | | | | | | | Member/Location | | | | | Job Title | Mambar D | osian Doi | oforced Con | oroto Poon | DC0110 | Drg. Ref. | | | | | | esign - RC | | nforced Con | icrete bean | 1 058110, | 1 | Date 1 | 6/1/2024 | Chd. | | Member D | esign - NC | Deam | | | | | 1 | 0/1/2024 | BS8110 | | Notes on | Applicatio | n to Upsta | and Beams | <u> </u> | | | | | | | | | - | | | | | | | | | Rect - s/s | | N/A | | | | | N/A | | | | Rect - cont | tinuous | Hog in con | tinuous bea | am with pre | ecast slab | | | s irrelevant | | | Rect - can | tilever | | tilever bear | m with pred | ast slab | | Deflections | s relevant | | | T - s/s | | N/A | | | | | N/A | <u> </u> | | | T - continu | | _ | tinuous inte | | | | | s irrelevant | 1 | | T - cantile | ver | | tilever inte | rior beam v | vith insitu s | slab
 | Deflections | s relevant
 | | | L - s/s
L - continu | IOUS | N/A |
ntinuous edg | ge heam wi | th incitu cl
 <u> </u> | N/A
Deflections |
s irrelevant | | | L - cantille | | | itilever edge | | | | Deflections | | | | Rect - s/s | | _ | beam with | | | | Deflections | | | | Rect - cont | tinuous | | tinuous bea | | | itu slab | Deflections | | | | | | | | r | ook) | ate line loa | d 100 kN/m | 1 | | | | | | | | | 10 | | | | | | | | | | | 10 | | \dashv \sqsubseteq | | | | | | | | | 12 | | \square | | | | | | | | | 5 | | | | | | | | | | | | | _ | 0 | 40 | | | | | | | | | | 9m | 10m | | | | | | | | | | 575mm | 675mm | | | | | | | | | | 675mm | 800mm | | | | - | | | | | | | | \dashv | | | | | | | | | 775mm | 925mm | | | | | | | | | | | | = | 11m | 12m | | | | | | | | | | | 12/11 | | | | | | | | | | 550mm | 650mm | | | | | | | | | | 650mm | 750mm | | | | | | | | | | | | - $ $ $ $ $ $ | | | | | | | | | 775mm | 875mm |