						Job No	<u> </u>	Sheet No.		Rev.
		Engineerin		on Sheet					-	1.001
ENGI	NEERS	Consulting	Engineers			jXX	Х		1	
						Member/Lo	ocation			
Job Title			-		Pad, Strip and	O ^{rg.}		1		
Structure,	Member De	esign - Geo	technics Pa	d, Strip a	and Raft	Made by	XX	Date 21	/11/202	Chd.
Material	Properties									
Charactori	ctic strongt	h of concre	to $f(z 6)$	ON/mm ²				5 🗸	N/mm ²	ОК
		itudinal stee							N/mm ²	UK
		ar link steel,							N/mm ²	
	oncrete and		, , .		Normal	Weight	-		kN/m ³	
Factor of	Safety									
		-	-		S_1 (usually 2.	5 to 3.0))	3.0		
	, ,	all sliding r						1.6		
		all uplift re			S ₄ (usually 1.	6)		1.0 1.6		
			-		S_4 (usually 1. g on DL to LL	-		1.50		BS8110
					ads for sectio		force			cl. 2.4.3.1.
			/0000 /0				2.00			
Soil Desc	ription									
Water unit	weight, γ_w	= 9.81kN/r	n ³					9.8	kN/m ³	
Soil name	<u> </u>				Loose Sand	1		-		
	init weight,	1						1	kN/m ³	
Saturated	bulk unit w	eight, γ _{sat}						20.5	kN/m ³	-
Undrained	choor strop	ath limit to	adopt 2				worl	Limit 🔽		
		ngth limit to shear strer		limit) S		LC	wer l		kPa	
		shear strer							kPa	
Undrained					(S _{u,ll} +S _{u,ul})/2,	S _{0.01} }		-	kPa	
-		obtained fro		,						Tomlinson
					_					
Effective c	ohesion, c'					Exclude	-	0.0	kPa	
Effective a	ingle of she	ar resistanc	ce, φ'					35.0	degrees	
-				-	T (Durgunogli		litch			Tomlinson
Effective a	ingle of fric	tion or 0.66ø'	(Insitu Concre	te Active Zo	one - Soil Interfac	e)	▼	23.1	degrees	
. .								 		
	pacity limit		wahla haar	ing cono			oper			
Dearing Ca		SPT, N valu		шу сара	Drained Soil:		-	30.0	es ?	
l		pacity (low	-			50.0	•	-	kPa	_
	SPT (lower			<u>-</u>				4		
	-	pacity (upp	er limit), F	OS ₁ .BC _{ub}	a			N/A	kPa	
		r limit), N _{ul}		,				10		
Note that			the allowa	ble bear	ing capacity,	BC _{II,a/ul} ,	_a at	this stage	because	
			-		ffective bearii	ng capa	city	is calculate	ed;	
Ground wa	ater level m	odification	for beari GW	VL >= B	▼ Non Cohe	sive Soil	◄	1.00		BS5975
	ļ	Table	18 — Gro	und wat	er level mod	ificatio	on f	actor	1	<u> </u>
		Condition						tion factor fo	or:	I
					Cohesive so			ohesive soils		ks
		el at <i>B</i> , or le <i>B</i> is the wi			1.0	0.	5		1.0	
	able to flood		ath of found		0.67	0.	5		1.0	
		-			I				1	<u> </u>
Bearing ca	pacity ador	ted, BC						300	kPa	
			La,(BC ₁₁ +	-BC ,,, , ,)/.	2, BC _{ul,a} } or	 {К _{БРТ} .	V",			PT .N ,,, }1:
			-,, <u>-</u> ,a'							
	•					•		•		-

CON	SULTING	Engineerin	g Calculatio	n Shoot		Job No.	Sheet No.		Rev.
	NEERS			In Sheet		jXXX		2	
		J	5			_		-	
						Member/Location			
Job Title			esign - Geot						L
Structure,	Member De	esign - Geo	technics Pa	d, Strip and	l Raft	Made by XX	Date 21	/11/2021	hd.
Analysis	Method								
Undrained	, drained or					Empirical Ana	lysis 🔻		
			drained, dra		•				
			erform dra			alyses;			
	For rocks,	perform dr	ained and e	empirical an	alyses;				
	verall uplift			\ <i>.</i>			No 🔽		
			e (mid third				thus may il I	n certain	
instances l	be aeemea	to be over	conservative	e and subse	equentiy igi	norea;			
F	on Dimens	•							
Foundatio		lons							
Foundation						Dad Faating	–		
Foundation	i type			1		Pad Footing			
\vdash									
⊢∣		7 D	Z						
			¥						
			- ·						
Depth of f	oundation f	ounding lev	el from gro	und level [(> - 0.00))0m)	0.650	m	ОК
-	vater table f	-) (>= 0.00		0.650		ΟK
•		-	ater table h	as an effect	tive suhme	raed unit w			
			, thus reduc						
			le forseeabl	-				g capacity,	
	-		ter table ab		l level, this	representi	ng a flood	event	
			iver with th						
_			ound level	-	-			(effective)	
			consider al						
<u> </u>									
Foundatio	on Reinfor	cement							
Cover to a	ll (bottom a	and side) re	inforcemen	t, cover ₁ (u	sually 75)		50	mm	
			cover ₂ (usu				25	mm	
Foundatio	on SLS Loa	ding							
Surcharge	at surface,	p _{surface}					0	kPa	
Note that	(unlike reta	ining walls)	surface su	rcharging ir	ncreases ov	verall (effec	tive) beari	ng	
capacity, t	hus conside	er the case	when there	is no surch	arge unles	s it can be	guaranteed	d;	
Consider r	eduction of	working pr	essure due	to surcharg	ge above fo	ounding lev	el, p_0 or p_0	1	
in net (effe	ective) worl	king pressu	re, q _{wnet} or	q _{wnet} ' ?			Yes 🔻		
Note that i	for the case	where an	excavation	and backfill	(embedde	d footing) i	takes place	prior to	
application	of working	pressure a	at the found	ling level: -					
			(above foo						
			of working						
Note that i	for the case	where an	excavation	without bac	ckfill takes	place prior	to applicat	ion of	
	ressure at t								
		ude additio	nal soil (ah	ove footing) weiaht F				
			of working				net Or q wnet		
	do conside	r reduction		pressure d	ue to p ₀ o	$r p_0' in q_w$			
Note that i application	<i>do conside for the case of working</i>	er reduction e where an g pressure a	of working excavation at the found	pressure d had already ling level: -	ue to p ₀ o ⁄ taken pla	$r p_0'$ in q_w ce in the pa			
Note that i application	do conside for the case of working do not incl	er reduction e where an g pressure a ude additio	of working excavation at the found nal soil (abo	pressure d had already ling level: - ove footing,	ue to p ₀ o ⁄ taken plac) weight, F	r p ₀ ' in q _w , ce in the pa above,soil	ast prior to		
Note that i application	do conside for the case of working do not incl	er reduction e where an g pressure a ude additio	of working excavation at the found	pressure d had already ling level: - ove footing,	ue to p ₀ o ⁄ taken plac) weight, F	r p ₀ ' in q _w , ce in the pa above,soil	ast prior to		

						Job No.	Sheet No.		Rev.
	ISULTING E			on Sheet					I.C.V.
E N G I	$\mathbf{N} \mathbf{E} \mathbf{E} \mathbf{R} \mathbf{S}$	Consulting	Engineers			jXXX		3	
						Member/Location			
Job Title	Structure, M	Iombor Do	sian - Coo	tochnice Pa	d Strip and	Drg.			
	Member Des		-			Made by XX	Date 31	/11/202	Chd.
Structure,	Member Des	sign - Geo	lechnics Pa	u, Suip an			21	/11/202.	
									_
Executive	e Summary								
	overall net t	-				N/A	N/A		
	verall net effe					N/A	N/A		
	overall net ef			city		91%	OK		
	ding resistan		У			0%	OK		
	lift resistance					N/A	N/A		
Overall ov	erturning res	sistance ca	pacity			0%	OK		_
	Pad Footin	-							
	Sagging ber					5%	ОК		
	Sagging ber				<u>1</u>	10%	ОК		
	% Min sag r					34%	ОК		
	% Min sag r					34%	ОК		_
	Punching sh					12%	ОК		1
	Punching sh	near at firs	t shear per	imeter		14%	ОК		
	Punching sh	near at sec	ond shear	perimeter		0%	ОК		
	Ultimate she	ear stress	for bending	g in plane o	of width	4%	ОК		
	Shear desig	n capacity	for bendin	g in plane	of width	7%	ОК		
	Ultimate she	ear stress	for bending	g in plane c	of length	5%	ОК		
	Shear desig	n capacity	for bendin	g in plane	of length	14%	ОК		
	Detailing re	quirement	S			NOT	ОК		
		-							
	Strip Footi	na							
	Sagging ber		nent			N/A	N/A		
	% Min sag r	_				N/A	N/A		
	Ultimate she					N/A	N/A		
	Shear desig					N/A	N/A		
	Detailing re					N/X			
		quirement	5						
	Multi Colui	mn Footir							
	Sagging ber		-	o of width		N/A	N/A		
	Sagging ber	-	· · · · · · · · · · · · · · · · · · ·		1	N/A N/A	N/A N/A		
		-	•			N/A N/A			
	Hogging bei	-			1		N/A		
	% Min sag r					N/A	N/A		
	% Min sag r					N/A	N/A		_
	% Min hog i			-		N/A	N/A		
	Punching sh					N/A	N/A		
	Punching sh					N/A	N/A		
	Punching sh					N/A	N/A		
	Ultimate she					N/A	N/A		
	Shear desig					N/A	N/A		
		oar stross	for bending	g in plane c	-	N/A	N/A	-	
	Shear desig	n capacity		g in plane	of length	N/A	N/A		
		n capacity		g in plane	of length	N/A N,			
	Shear desig	n capacity		g in plane	of length				
	Shear desig	n capacity		g in plane	of length				
	Shear desig	n capacity		g in plane	of length				
	Shear desig	n capacity		g in plane	of length				
	Shear desig	n capacity		g in plane	of length				
	Shear desig	n capacity		g in plane	of length				
	Shear desig	n capacity		g in plane	of length				
	Shear desig	n capacity		g in plane	of length				
	Shear desig	n capacity		g in plane	of length				
	Shear desig	n capacity		g in plane	of length				

						Job No.	Sheet No.		Rev.
		Engineerin		on Sheet					1.001
ENGI	N E E R S	Consulting	Engineers			jXXX		4	
		,		1		Member/Location			
Job Title	Structure	Member De	sian - Geo	Lechnics Pa	d Strin and	Drg.	L		
	-	esign - Geol	-			- ·	Date 21	/11/2021	hd.
Sti uctui e,				u, Strip and		· • • • •		./11/2021	
							<u> </u>		
							<u> </u>		
	a						<u> </u>		
	Combined		L						
		ending mon				N/A	N/A		
		ending mon	•			N/A	N/A		
		ending mon			 	N/A	N/A		
	_	reinforcem				N/A	N/A		
	-	reinforcem		-		N/A	N/A		
	-	g reinforcem				N/A	N/A		
	_	shear at colu				N/A	N/A		
		shear at firs				N/A	N/A		
	_	shear at sec		-		N/A	N/A		
		hear stress				N/A	N/A		
		ign capacity				N/A	N/A		
		hear stress				N/A	N/A		
	Shear des	ign capacity	for bendin	g in plane o	of length	N/A	N/A		
	Detailing r	requirement	S			N,	/A		
	Strap Foo	oting							
	Sagging b	ending mon	nent in plar	ne of width	of outer for	N/A	N/A		
	Hogging b	ending mon	nent in bea	m		N/A	N/A		
	% Min sag	reinforcem	ent in plan	e of width (of outer foo	N/A	N/A		
	% Min hoc	g reinforcem	ent in bear	m		N/A	N/A		
	Punching s	shear at colu	umn base f	ace		N/A	N/A		
		shear at firs				N/A	N/A		
	-	shear at sec				N/A	N/A		
		hear stress		-	f width of c		N/A		
		ign capacity					N/A		
		hear stress				N/A	N/A		
	-	ign capacity				N/A	N/A		
		requirement				-	/A		
			5						
	Raft								
		nforcomont	bacad on t	ha combine	tion of mu	lti column fi	Latings of	mbinod	
	Design rel	nforcement	Jaseu ON E				Joungs, CO	lined	
			 				010/		
overall uti	ilisation sun			<u> </u>			91%		
0/ 0	-			<u> </u>			0.20	0/	
		nent in plan		<u> </u>		<u> </u>	0.38	%	
	-	nent in plan	-			faction >	0.38	%	
	-	ment in plan	_			rooting)	N/A	%	
		prcement qu					59	kg/m ³	
		tity in kg/m							
Material co			concrete, c		units/m ³	steel, s	3200	units/tonn	e I
Reinforced	l concrete r	material cos	t = c+(est.	rebar quar	າt).s		449	units/m ³	
			ļ	<u> </u>	ļ	ļ	ļ		
			 	<u> </u>	ļ	r	ļ		
		ļ		<u> </u>					
				ļ					
				L					
							_		
		+		1					
	+	+	(+	t	+	i	+	1
			l			i i			

					Job No.	Sheet No.		Rev.
CONSULTING E N G I N E E R S	-	-	on Sheet		jXXX		5	
					Member/Location		5	
lob Title Structure,	Mombor D	ocian - Coo	technics Pa	d Strip and	Drg.			
Structure, Member De		-		a, ourp and		Date 21	/11/2021	Shd.
					7			
Relevant Foundatio	n Parame	ters						
Relevant foundation t					Da	d Footing		
	уре				r a			
	Overall) Bearing (Capacity a		Sliding R	esistance	Capacity
	В	(m)	L	(m)	B'	(m)	L'	(m)
Pad Footing	B _{pad}	0.600		0.750	B _{pad} '	0.557	L _{pad} '	0.750
Strip Footing Multi Column Footir	B _{strip} B _{multi}	N/A N/A	infinity L _{multi}	N/A N/A	B _{strip} ' B _{multi}	N/A N/A	infinity L _{multi}	N/A N/A
Combined Footing	B _{com}	N/A		N/A	B _{com}	N/A		N/A
Strap Footing	B _{strap,1}	N/A	L _{strap,1}	N/A	B _{strap,1}	N/A	L _{strap,1}	N/A
Raft	B _{raft}	N/A	L _{raft}	N/A	B _{raft}	N/A	L _{raft}	N/A
	В	0.600	L	0.750	Β'	0.557	L'	0.750
Proce working reserve								
Gross working pressu Vote q _w above is q _{w.}		footina ·				102	кра	
	Overall	Sliding Re	esistance (Capacity	Overal	l Uplift Re	sistance C	apacity
	Vertical	(kN or	Horizont	(kN or	e _B (m)	e _{B,limit}	e _L (m)	e _{L,limit}
	Load	kN/m)	al Load	kN/m)		(m)		(m)
Pad Footing	F _{pad,v} '	43	F _{pad,h}	0	0.021	0.100	0.000	0.125
Strip Footing Multi Column Footir	F _{strip,v} ' N/A	N/A N/A	F _{strip,h} N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Combined Footing	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Strap Footing	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Raft	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	F _v '	43	Fh	0	0.021	0.100	0.000	0.125
	Dverall Ov	erturning ™ _{rt,B}	Resistanc	e Capacity M _{rt,L}				
	(kNm or	(kNm or	(kNm or	(kNm or				
Pad Footing	<u>k Nm /m</u>)	2 Nm/m) 7	<u>k Nm /m</u>)	10 kNm/m				
Strip Footing	N/A	N/A	N/A	N/A				
Multi Column Footir		N/A	N/A	N/A				
Combined Footing	N/A	N/A	N/A	N/A				
Strap Footing Raft	N/A	N/A	N/A	N/A				
Mail	N/A 0	N/A 7	N/A 0	N/A 10				
								<u> </u>
	1							1

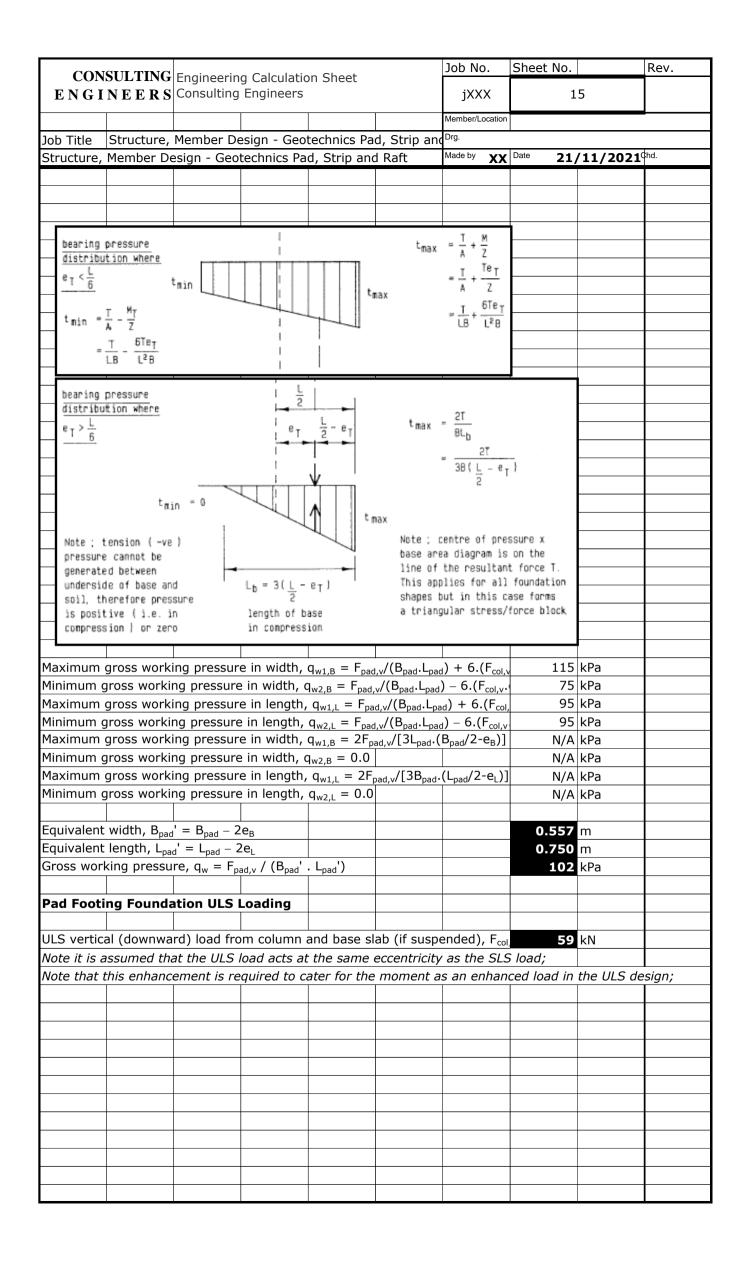
CON			~					Job No.	Sheet N	0.	Rev.
					g Calculat Engineers			jXXX		6	
ENGI			5 CONSC	anting	Lingineers]~~~		0	
								Member/Locati	on		
Job Title							Pad, Strip a				
Structure,	Mer	nber [Design -	- Geo	technics P	ad, Strip	and Raft	Made by X	X Date 2	1/11/20	21^{Chd.}
Undraine	d O	verall	Net B	earin	g Capacit	y					
- · ·											
Total surc				-					-	A kPa	
	Ca	se wn			>= MAX	(B, L)			N/		
	Ca	so wh			_e +γ _{dry} .D - D) < MA					/A kPa	
	Ca				 _e +γ _{dry} .D				N/	A /A kPa	
	Ca	se wh	en (z "						N/		
					 _e +γ _{dry} .D					A /A kPa	
	Ca	se wh			< 0 and 2	z., >= 0			N/		
					e+γ _{sat} .(D-z					/A kPa	
	Ca	se wh	en z _u						N/		
					$r_{e} + \gamma_{sat} \cdot D + \gamma_{sat}$	w.(-z _u)				/A kPa	
Net bearir	ng ca	pacity	, q _{fnet} =	= q _f -	p ₀				N/	A kPa	
	-				$y, q_f = s_c$	d _c .N _{c,strip} .	$S_u + p_0$		N/	A kPa	Terzaghi
	L r										
	\downarrow	10			1			1 1	7		
	\parallel										
		9				ircle or sque	are		-		
		8									
		0							-		
		, 7	$ \rightarrow $	-		Strip		+			
		~		1							
		octor 9					*	~	-		
		Bearing capacity factor, N _C					0				
		bac					1 1-4	>0			
		0 4 6		-+			Al recter	nale			
		Barir					N _c rectar = (0.84	+0.16 <u>B</u>)			
		œ .1					x Nc squ				
		2					+ +	+ + +			
		1							-		
		0		1		2 n denth / hr	3 eadth, <i>D/B</i>	4	5		
	T L				Touridatio		outin, 070				
					or, $s_c = 1$				N,	/A	EC7
							0/B') ^{0.5} for D/	′B' <= 4.0	N,	/A	N/A
					pacity fact			π) = 5.14,	N,	/A	Skemptor
Net worki					, - (p ₀ or 0)				A kPa	
			rking p						-	A kPa	
							following ana				
-			-			-	, conservativ	-			
						he soil in	terface above	e the found	ling level a	nd any	
wall embe	edme	nt bel	ow the	tound	ding level;						
Indrainad		roll or	there	ng 65	nacity (fr	torod) -					
					pacity (fac					A kPa	
							ABS (q _{wnet}) /				N/A
							present the	susceptibil	ity to base	neave	
instability	as V	ien as		zi dil 1	net bearin <u>e</u>	y capacity	' <i>i</i>				
							I				

			Job No.	Sheet No.		Rev.
	G Engineering Calculation Sheet S Consulting Engineers		jXXX		7	
			_		/	
		<u> </u>	Member/Location			
	e, Member Design - Geotechnics Pad,			Data D1	(11 (202)	• Chd
Structure, Member	Design - Geotechnics Pad, Strip and R	kart	Made by XX	Date 21	/11/202	
Drained Overall N	let Effective Bearing Capacity					
Effective surcharge	above founding level, p_0 '			N/A	kPa	
Unit weight, γ'					kN/m ³	
Case wl	hen (z _u -D) >= MAX (B, L)			N/A		
	$p_0' = p_{surface} + \gamma_{dry} D$				kPa	
	$\gamma' = \gamma_{dry}$				kN/m ³	
Case wl	hen $0 < (z_u - D) < MAX (B, L)$			N/A	-	
	$p_0' = p_{surface} + \gamma_{dry} . D$				kPa	
C	$\gamma' = z_u / MAX(B,L) \cdot [\gamma_{dry} - (\gamma_{sat} - \gamma_w)]$	+ (γ _{sat} -	γ _w)		kN/m ³	
Case wi	$hen (z_u - D) = 0$			N/A	kDo.	
	$p_0' = p_{surface} + \gamma_{dry}.D$ $\gamma' = \gamma_{sat} - \gamma_w$				kPa kN/m ³	+
Case w	$\frac{\gamma - \gamma_{sat} - \gamma_w}{hen (z_u - D) < 0 and z_u >= 0}$			N/A		
	$p_0' = p_{surface} + (\gamma_{sat} - \gamma_w) \cdot (D - z_u) + \gamma_{dry} \cdot z_u$			N/A	kPa	1
	$\gamma' = \gamma_{sat} - \gamma_{w}$				kN/m ³	1
Case wi	hen $z_u < 0$			N/A		
	$p_0' = p_{surface} + \gamma_{sat} \cdot D + \gamma_w \cdot (-z_u) - \gamma_w \cdot (D + v_w) \cdot (-z_w) - \gamma_w \cdot (D + v_w) \cdot (-z_w) \cdot (-z_w) - \gamma_w \cdot (D + v_w) \cdot (-z_w) - \gamma_w -$			N/A		
	Note that the above equation reduc	ces to p _c	$p' = p_{surface}$			
	$\gamma' = \gamma_{sat} - \gamma_{w}$			N/A	kN/m ³	
	g capacity, $q_{\text{fnet}}' = q_f' - p_0'$			N/A		
	fective bearing capacity, q _f '			N/A		Terzaghi
	$= s_c \cdot d_c \cdot N_{c, strip} \cdot c'$			N/A		
	+ $s_q.d_q.N_{q,strip}.p_0'$ + $s_{\gamma}.d_{\gamma}.N_{\gamma,strip}.B'/2.\gamma'$				kPa kPa	
	+ 3γ · $\alpha\gamma$ · $\alpha\gamma$, strip. D / 2. γ			N/ A	кга	
860110	Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne	Bearing capacity fac		20 30 Friction ar		60 70 ations on rock.
Tansen				0 refactly in		
Equation	s for bearing capacity Prandtl, Reissner and	d Hansen E	equations for So	oils 🔻		
	on Factors			L		
	Shape factor, $S_c = (S_q \cdot N_q - 1)/(N_q - 1)$			N/A		EC7
	Depth factor, $d_c = 1 + 0.4 \arctan(D/B)$			N/A		
	Note B in the above equation is B';					
	Bearing capacity factor, N _{c,strip}			N/A		
	Soils $N_{c,strip} = (N_{q,strip}-1).cot\phi'$	$N_{c} = (N_{c} = N_{c}$	a - 1) cot ¢' n²(45°+∳/2)	N/A		EC7 (Prand
	Rocks $N_{c,strip}$ N_c $2N_{o}^{1/2}(N_{o}+1)$	nv _∲ .⊓a	n (45° + ¢/2)	N/A	Kulh	awy and Go

	NSULTING	Engineerin	a Calculatio	n Chaot	Job No	. Sheet No.	Rev.
	INEERS			in Sheet	jXXX	κ 8	
					Member/Lo	cation	
ob Title	Structure.	Member De	esian - Geot	echnics Pad, Str	in and ^{Drg.}		
			-	d, Strip and Raft		XX Date 21/1	L1/2021 ^{Chd.}
				-,			
	Surcharg	e Factors					
		Shape fact		+ (B' / L') sin <i>φ</i> ',		N/A	EC7
		Depth fact	or, d _q 1+2	$\tan \varphi'(1 - \sin \varphi')^2$	rctan	N/A	
					B'		
			pacity facto			N/A	
				tan ² (45 ⁻ + φ'/2) : N ₆ ² N ₆ : Tan ²	/15°±↓/2)	N/A	EC7 (Reis
	Colf Wain	ROCKS	N _{q,strip} N _a	$N_{\phi}^2 = N_{\phi}^2$ Tan ²	45°+¢/2)	N/A	Kulhawy and
	Self weig	Shape fact		– 0,3 (<i>B'/L'</i>),		N/A	EC7
		Depth fact				N/A N/A	EC7
			pacity facto			N/A	
				O(N _{q,strip} -1).ta N _γ	= 2 (N ₀ - 1) tan	-	EC7 (Har
				$N_{\phi}^{1/2}(N_{\phi}^{2}-1)$ N_{ϕ}			Kulhawy and
			Watth				
	2	°			4.0	1 1 1	
			¢ =	45°			5 67
	1	.8			3.5	¢=45	
	s 1	6	1	7.		¢-45	
	Shape factor, se				30		
	de 1.	4	4	40°	5	=402	3.59 8
	S)			=30°	3 2 5		0/1
	1,	2	1	30	2 6	= 35°	2 56 5
	- mainte	1		0-25°	8 20	N	
				=30° 0-25° /		= 30° = 25°	2 04
	octor,	8		=35°		=20=	1.65
	Shape factor, s _y			40°		= 0-10°	1.56
	sha o	6		45°			
	0.	50 0.2	0.4 0.6	0.8 1.0	100	5 10 15	20
	postalij n		readth / length,			Depth / breadth, D/B_{g}	
	Fig. 2.9	Shape factors sc	and s_{γ} (after Br	inch Hansen ^{2.1}).	2.11 Depth fa	actor d_c (after Brinch Ha	ansen ²⁻¹).
	Shape of b	ase s _c	Sq	3γ			
	Continuous			1.0			
			+ 0.2B/L = 1 + 0	2B/L 1 - 0.4B/L			
	Rectangle	1.3	1.2	0.8			
	Square						
	Square	1.3		0.8			
	Square Circle (B =	= diameter) 1.3	1.2	0.8			
et effect	Square Circle (B =	e diameter) 1.3	1.2 $q_{wnet}' = q_w'$	0.8		N/A k	
et effect	Square Circle (B =	e diameter) 1.3 1.3 pressure, c king pressu	1.2 $q_{wnet}' = q_w' - q_w$	- (p ₀ ' or 0)		N/A k	Ра
et effect	Square Circle (B =	e diameter) 1.3 1.3 pressure, c king pressu ssure at fou	1.2 $q_{wnet}' = q_w' + re, q_w$ $nding level,$	$(p_0' \text{ or } 0)$, $u = \gamma_w \cdot MAX$ (E) – z _u , 0)	N/A k	Pa Pa
	Square Circle (B = Circle working Gross work Water press Gross effe	e diameter) 1.3 1.3 pressure, c king pressu ssure at fou ctive workir	1.2 $q_{wnet}' = q_w' - re, q_w$ inding level, ng pressure	$(p_0' \text{ or } 0)$ $(u = \gamma_w \cdot MAX (D))$ $(u = q_w - u)$		N/A k N/A k N/A k	Pa Pa
ote a ne	Square Circle (B = Circle (Circle (Cir	a diameter) 1.3 pressure, c king pressu ssure at fou ctive workin t' indicates	1.2 q _{wnet} ' = q _w ' - re, q _w inding level, ng pressure an excavati	$(p_0' \text{ or } 0)$ $(u = \gamma_w \cdot MAX (I)$ $(q_w' = q_w - u)$ $(v, the following)$	analysis asc	N/A k N/A k N/A k rertains the	Pa Pa Pa
lote a ne usceptib	Square Circle (B = Circle (B = Gross working Water press Gross effect gative q wnet ility of the sy	e diameter) 1.3 pressure, c king pressu ssure at fou ctive workin t' indicates ystem to ba	1.2 $q_{wnet}' = q_w' - re, q_w$ inding level, ang pressure an excavator ase heave in	$\begin{array}{c} 0.8\\ 0.6\\ \hline \end{array}$	analysis asc vatively howe	N/A k N/A k N/A k ertains the ever ignoring the	Pa P
<i>lote a ne usceptib</i> i ontributi	Square Circle (B = Circle (Circle	a diameter) 1.3 pressure, c king pressu ssure at fou ctive workin t' indicates ystem to bar earing resis	1.2 $q_{wnet}' = q_w' - re, q_w$ inding level, ng pressure an excavations ase heave in stance of the	$\begin{array}{c} 0.8\\ 0.6\\ \hline \end{array}$	analysis asc vatively howe	N/A k N/A k N/A k rertains the	Pa P
<i>lote a ne usceptib</i> i ontributi	Square Circle (B = Circle (B = Gross working Water press Gross effect gative q wnet ility of the sy	a diameter) 1.3 pressure, c king pressu ssure at fou ctive workin t' indicates ystem to bar earing resis	1.2 $q_{wnet}' = q_w' - re, q_w$ inding level, ng pressure an excavations ase heave in stance of the	$\begin{array}{c} 0.8\\ 0.6\\ \hline \end{array}$	analysis asc vatively howe	N/A k N/A k N/A k ertains the ever ignoring the	Pa P
lote a ne usceptib ontributi vall embe	Square Circle (B = Circle (B = Gross working Water press Gross effect gative q wnet ility of the sy on of the sh edment belo	a diameter) 1.3 pressure, c king pressu ssure at fou ctive workin t' indicates ystem to ba earing resis w the found	1.2 $q_{wnet}' = q_w' + re, q_w$ anding level, an excavator an exca	$\begin{array}{c} 0.8\\ 0.6\\ \hline \end{array}$	analysis asc vatively howe bove the four	N/A k N/A k N/A k ever ignoring the nding level and a	Pa P
lote a ne usceptib ontributi vall embe rained o	Square Circle (B = Circle (B = Circle (B = Gross working Water press Gross effect gative q wnet ility of the sy on of the sh edment belo	a diameter) 13 13 pressure, c king pressu ssure at fou ctive workin t' indicates ystem to ba earing resis w the found ffective bea	1.2 $q_{wnet}' = q_w' - re, q_w$ inding level, an excavation an excavation	$\begin{array}{c} 0.8\\ 0.6\\ \hline \end{array}$	a analysis asc vatively howe bove the four bove the four bove the four	N/A k N/A k N/A k ever ignoring the nding level and a N/A k	Pa Pa Pa any Pa
lote a ne usceptibli pontributi vall embe prained o prained o	Square Circle (B = Circle (Circle	aiameter) 1.3 pressure, c king pressu king pressu ssure at fou ssure at fou ctive working t' indicates ystem to bas earing resis w the found ffective bea ffective bea	1.2 $q_{wnet}' = q_w' + re, q_w$ inding level, an excavation an excavation be heave in stance of the ding level; ring capacitor ring capacitor	$\begin{array}{c} 0.8\\ 0.6\\ \hline \end{array}$	a analysis asc vatively howe bove the four bove the four t' / FOS ₁ 3S (q _{wnet} ') / (N/A k N/A k ertains the ever ignoring the nding level and a N/A k	Pa P
ote a ne usceptib ontributi all embe rained o rained o ote an a	Square Circle (B = Circle (B = Circle (B = Circle (B = Circle (B = Water press Gross world Water press Gross effet gative q wnet ility of the sp on of the sh edment belo werall net effet bsolute function	a diameter) 13 pressure, construction of the second secon	1.2 $q_{wnet}' = q_w' - re, q_w$ anding level, ang pressure an excavator ase heave in stance of the ding level; ring capacit ring capacit lied to the a	$\begin{array}{c} 0.8\\ 0.6\\ \hline \end{array}$	a analysis asc vatively howe bove the four bove the four bove the four bove the four bove the four the susceptil	N/A k N/A k N/A k ever ignoring the nding level and a N/A k	Pa P
lote a ne usceptibl ontributi vall embe prained o prained o lote an a nstability	Square Circle (B = Circle (B = Circle (B = Circle (B = Circle (B = Water press Gross world Water press Gross effet gative q wnet ility of the sp on of the sh edment belo werall net effet bsolute function	a diameter) 13 pressure, construction of the second secon	1.2 $q_{wnet}' = q_w' - re, q_w$ anding level, ang pressure an excavator ase heave in stance of the ding level; ring capacit ring capacit lied to the a	$\begin{array}{c} 0.8\\ 0.6\\ \hline \end{array}$	a analysis asc vatively howe bove the four bove the four bove the four bove the four bove the four the susceptil	N/A k N/A k ertains the ever ignoring the nding level and a N/A k	Pa P
lote a ne usceptib ontributi vall embe vrained o vrained o lote an a	Square Circle (B = Circle (B = Circle (B = Circle (B = Circle (B = Water press Gross world Water press Gross effet gative q wnet ility of the sp on of the sh edment belo werall net effet bsolute function	a diameter) 13 pressure, construction of the second secon	1.2 $q_{wnet}' = q_w' - re, q_w$ anding level, ang pressure an excavator ase heave in stance of the ding level; ring capacit ring capacit lied to the a	$\begin{array}{c} 0.8\\ 0.6\\ \hline \end{array}$	a analysis asc vatively howe bove the four bove the four bove the four bove the four bove the four the susceptil	N/A k N/A k ertains the ever ignoring the nding level and a N/A k	Pa P
ote a ne usceptiblo pall embe rained o rained o ote an a ostability	Square Circle (B = Circle (B = Circle (B = Circle (B = Circle (B = Water press Gross world Water press Gross effet gative q wnet ility of the sp on of the sh edment belo werall net effet bsolute function	a diameter) 13 pressure, construction of the second secon	1.2 $q_{wnet}' = q_w' - re, q_w$ anding level, ang pressure an excavator ase heave in stance of the ding level; ring capacit ring capacit lied to the a	$\begin{array}{c} 0.8\\ 0.6\\ \hline \end{array}$	a analysis asc vatively howe bove the four bove the four bove the four bove the four bove the four the susceptil	N/A k N/A k ertains the ever ignoring the nding level and a N/A k	Pa P

						Jak Na			Davis
CON	SULTING	Engineerin	g Calculatio	on Sheet		Job No.	Sheet No.		Rev.
ENGI	NEERS	Consulting	Engineers			jXXX		9	
	1					Member/Location			
Job Title		Member De	-			Drg.	1		1
Structure,	Member De	esign - Geo	technics Pa	d, Strip and	d Raft	Made by XX	Date 21	/11/2021	hd.
Empirical	l Overall N	et Effectiv	e Bearing	Capacity					
Effective s	urcharge al	bove foundi	ng level, p	')			12	kPa	
		en (z _u -D)					Invalid		
		$p_0' = p_{surface}$						kPa	
	Case whe	$r 0 < (z_u)$		(B.L)			Invalid		
		$p_0' = p_{surface}$		- (-/ -/				kPa	
•)	Case whe	en (z _u -D)	,				Valid	КI Ü	
.) dman	case whe	1						L/Do	
lman	Cara such a	$p_0' = p_{surfact}$						kPa	
	Case whe	en (z _u -D)					Invalid		
			$_{ce}$ +(γ_{sat} - γ_{w}).	$(D-Z_u)+\gamma_{dry}$	Z _u			kPa	
	Case whe						Invalid		
			$_{ce}+\gamma_{sat}.D+\gamma_{v}$					kPa	
		Note that t	the above e	equation rec	duces to p o	' = p _{surface}	+ $(\gamma_{sat} - \gamma_w)$.D;	
lman									
Net effecti	ive bearing	capacity, q	$q_{fnet}' = q_f' - p_f$	o ₀ '			300	kPa	
		ctive bearin			p ₀ '		312	kPa	
Net effecti	ive working	pressure, o	, a _{wnet} ' = a _w '	-(p ₀ ' or 0)			91	kPa	
	1	king pressu		/			102		
		ssure at fou		, u = γ M	1AX (D – z	, 0)		kPa	
							102		
	Gross effe						102	Ki u	
Note a neg	Gross effe					veis accerta	inc the		
	gative q _{wne}	t' indicates	an excavat	ion, the fol	lowing anal			ha	
susceptibil	gative q _{wne} lity of the s	_t ' indicates ystem to ba	an excavat ase heave ii	ion, the fol nstability, c	lowing anal onservative	ely however	⁻ ignoring tl		
susceptibil contributic	gative q _{wne} lity of the s on of the sh	_t ' indicates ystem to ba earing resis	<i>an excavat</i> ase heave in stance of th	ion, the fol nstability, c e soil interf	lowing anal onservative	ely however	⁻ ignoring tl		
susceptibii contributic	gative q _{wne} lity of the s	_t ' indicates ystem to ba earing resis	<i>an excavat</i> ase heave in stance of th	ion, the fol nstability, c e soil interf	lowing anal onservative	ely however	⁻ ignoring tl		
susceptibil contributic wall embe	gative q _{wne} lity of the s on of the sh dment belo	t' indicates ystem to ba earing resis w the found	an excavat ase heave in stance of th ding level;	<i>ion, the fol</i> <i>nstability, c</i> <i>e soil interl</i>	lowing anal onservative face above	ely however the foundin	g level and	l any	
susceptibil contributic wall embe Empirical o	gative q _{wne} , lity of the s on of the sh dment belo overall net o	t' indicates ystem to ba earing resis w the found effective be	an excavat ase heave in stance of th ding level; aring capac	ion, the fol nstability, c e soil interf city (factore	lowing anal onservative face above ed), q _{fnet} ' /	ely however the foundin FOS ₁	g level and 19 level and 100	l any kPa	
susceptibil contributic wall embe Empirical (Empirical (gative q _{wne} lity of the s on of the sh dment belo overall net o overall net o	t' indicates ystem to ba earing resis w the found effective be effective be	an excavat ase heave ii stance of th ding level; aring capac aring capac	ion, the fol. nstability, c e soil interf city (factore city utilisation	lowing anal onservative face above d), q _{fnet} ' / on = ABS (ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	OK
susceptibil contributio wall embe Empirical o Empirical o Vote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	ОК
susceptibil contributio wall embe Empirical o Empirical o Vote an al	gative q _{wne} lity of the s on of the sh dment belo overall net o overall net o	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	OK
susceptibil contributio wall embe Empirical o Empirical o Vote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	ОК
susceptibil contributio wall embe Empirical o Empirical o Vote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	<u>ОК</u>
susceptibil contributio wall embe Empirical o Empirical o Vote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	OK
susceptibil contributio wall embe Empirical o Empirical o Vote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	ОК
susceptibil contributio wall embe Empirical o Empirical o Vote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	OK
susceptibil contributio wall embe Empirical o Empirical o Vote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	OK
susceptibil contributio wall embe Empirical o Empirical o Vote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	ок
susceptibil contributio wall embe Empirical o Empirical o Vote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	OK
susceptibil contributio wall embe Empirical o Empirical o Vote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	OK
susceptibil contributio wall embe Empirical o Empirical o Note an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	OK
susceptibil contributio vall embe Empirical o Empirical o Note an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	OK
eusceptibil contributic vall embe Empirical o Impirical o lote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	OK
eusceptibil contributic vall embe Empirical o Impirical o lote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	OK
eusceptibil contributic vall embe Empirical o Impirical o lote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	OK
eusceptibil contributic vall embe Empirical o Impirical o lote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	OK
eusceptibil contributic vall embe Empirical o Impirical o lote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	OK
eusceptibil contributic vall embe Empirical o Impirical o lote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	OK
susceptibil contributio vall embe Empirical o Empirical o Note an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	
susceptibil contributio wall embe Empirical o Empirical o Note an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	
susceptibil contributio wall embe Empirical o Empirical o Note an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	OK
susceptibil contributio wall embe Empirical o Empirical o Vote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	
susceptibil contributio wall embe Empirical o Empirical o Vote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	
susceptibil contributio wall embe Empirical o Empirical o Vote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	
susceptibil contributio wall embe Empirical o Empirical o Vote an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	
susceptibil contributio wall embe Empirical o Empirical o Note an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	
susceptibil contributio wall embe Empirical o Empirical o Note an al	gative q _{wne} lity of the s on of the sh dment belo overall net overall net bsolute fund	t' indicates ystem to ba earing resis w the found effective be effective be ction is appli	an excavat ase heave in stance of th ding level; aring capac aring capac lied to the a	ion, the fol nstability, c e soil interf city (factore city utilisation above to pr	lowing anal onservative face above ed), q _{fnet} ' / on = ABS (esent the s	ely however the foundin FOS ₁ q _{wnet} ') / (q _{fr}	g level and g level and 100 91%	kPa	

CON		Franciscovia	e Celevietie			Job No.	Sheet N	0.	Rev.
	SULTING NEERS		g Calculatic Engineers	n Sheet		jXXX		10	
			_			Member/Locati	on		
1. h. Title	Chrusture	Mambar D	naian Caal	ta abrica Da	d Ctuin and	Drg.	on		
			esign - Geo technics Pa			-	X Date 2	21/11/2021	Chd.
Structure,		esign - Geo		u, Strip and		· ^		.1/11/2021	
Overall SI	iding Resi	stance Ca	pacity						
	_		l resistance	capacity co	onsidered,	passive re	esistance o	f soil in an	
			ered, argua						
retaining w	all analysis	should thi	s additional	capacity b	e required	and can b	e guarante	eed;	
			tical (down				0.0		
			ent is applie						-
			<i>his required</i> ad, k _{SLStoDL} .		e Ioad comp 	oonent ca		26 kN or kN/	 m
	lation SLS			V				0 kN or kN/	
									1
Overall slid	ling resista	nce capacit	y (factored)), F _{s,cap}				7 kN or kN/	m
1	Undrained		$F_{s,cap} = (B')$		S ₂		N	/A kN or kN/	1
	Drained An	nalysis	$F_{s,cap} = k_{SL}$	_{StoDL} .F _v '.tan	δ' / FOS ₂		N	/A kN or kN/	
	Empirical A		$F_{s,cap} = k_{SL}$					7 kN or kN/	
Overall slid	ling resista	nce capacit	y utilisation	$= F_h / F_{s,ca}$	ap I		0	%	ОК
									ļ
									1


CONS		Fraincarin	a Calaulatia	n Chaot		Job No.	Sheet No.		Rev.
ENGI	NEERS	Engineerin Consulting	Engineers	on Sheet		jXXX	1	.1	
						Member/Location			
Job Title	Structure,	Member De	esian - Geo	technics Pa	d, Strip and				
Structure, N						Made by XX	Date 21	/11/2021	Shd.
Overall Up	lift Resist	tance Capa	acity						
Overall upli	ft in width	resistance	canacity ut	ilisation = e			N/A		N/A
Overall upli	ft in length	resistance	capacity u	tilisation =	$e_L / e_{L,limit}$		N/A		N/A
Overall upli	ft resistand	ce capacity	utilisation	= MAX (e _B ,	/ e _{B,limit} , e _L	/ e _{L,limit})	N/A		N/A
			<u> </u>						

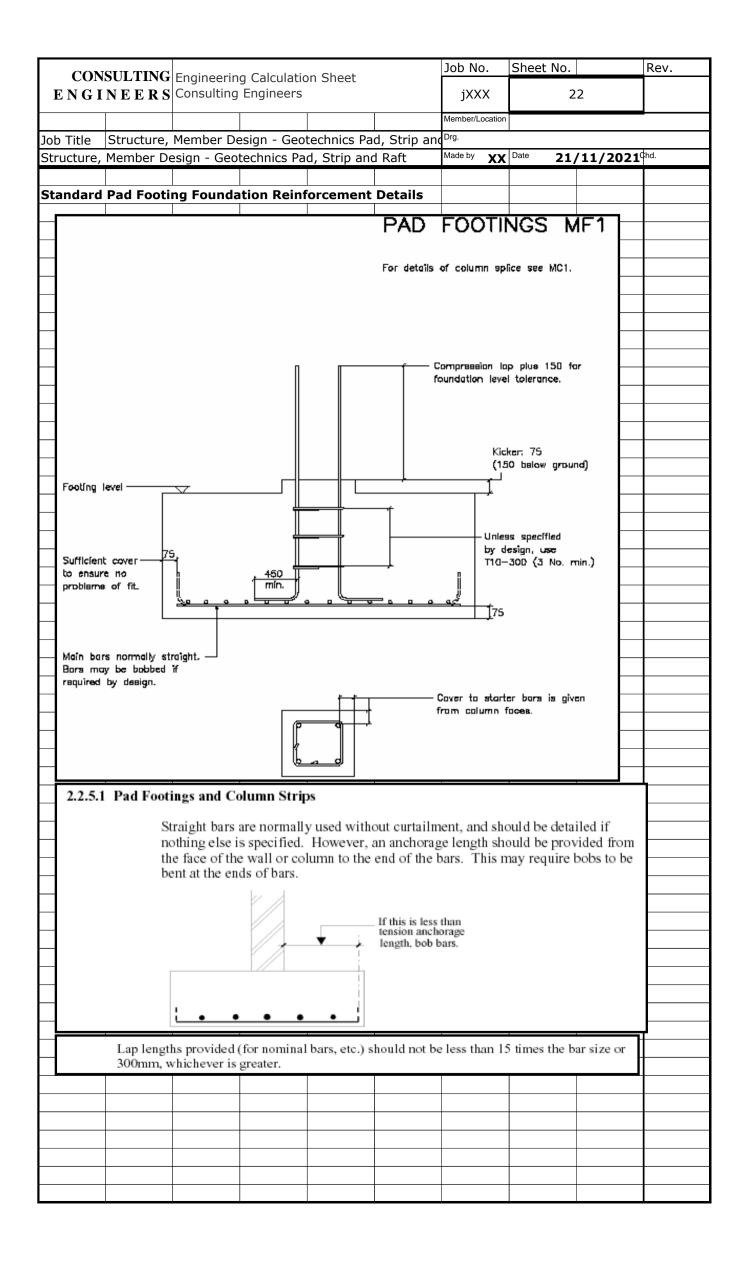
CON	SUI TING	Engineerin	a Calculatio	n Shoot		Job No.	Sheet No.		Rev.
ENGI	N E E R S	Consulting	Engineers	JII Sheet		jXXX	1	.2	
						Member/Location			
ob Title	Structure,	Member De	esign - Geo	technics Pa	d, Strip and	Drg.			
		esign - Geo				Made by XX	Date 21	/11/2021	hd.
Overall O	verturning	g Resistan	ce Capacit	: y					
) Verall ove	erturnina in	width resis	stance capa	citv utilisat	$ion = M_{ot R}$	/ M _{r+ P}	0%		ОК
Overall ove	erturning in	length res	istance cap	acity utilisa	tion = $M_{ot,L}$	/ M _{rt,L}	0%		ОК
Overall ove	erturning re	esistance ca	pacity utilis	sation = MA	X (M _{ot,B} / N	M _{rt,B} , M _{ot,L} /	0%		ОК

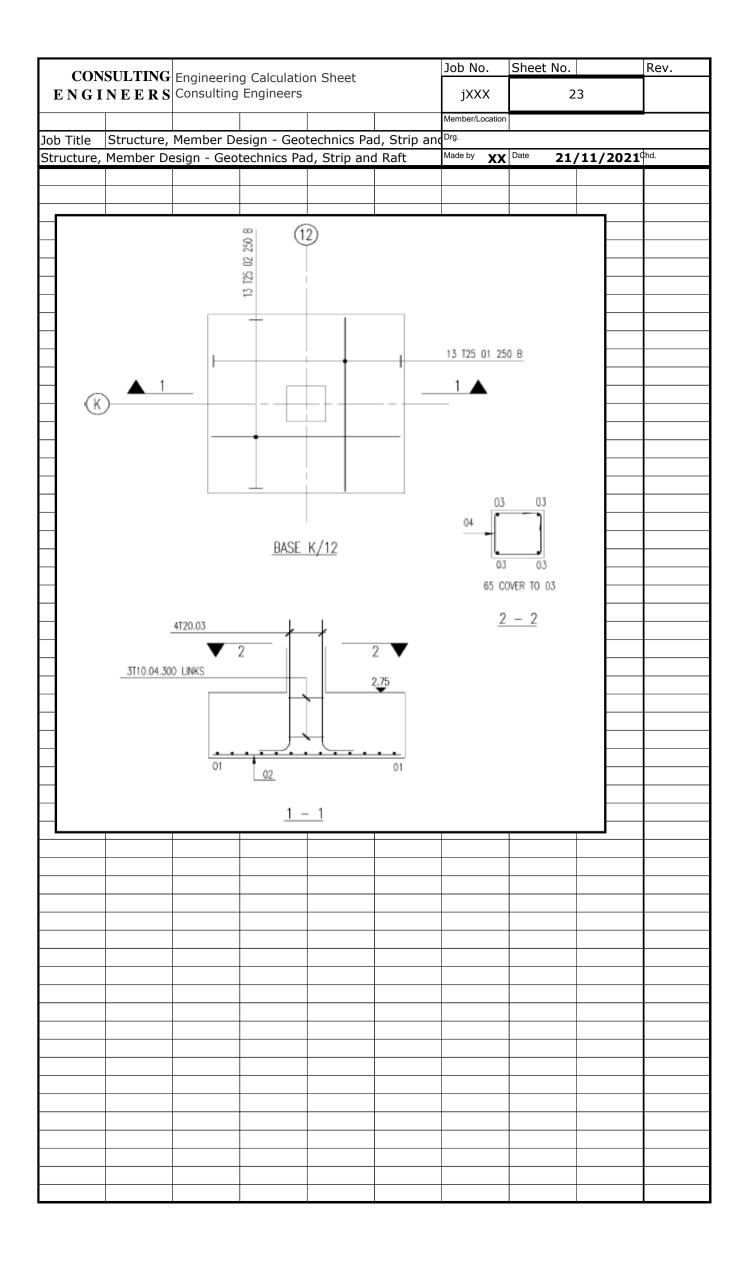
Cell Refer	ences						
concrete	grade					3	
25							
30							
35							
40							
45 50							
55							
60							
65							
70							
75							
80							
85							
90							
95							
100 105							
105							
115							
120							
longitudir	nal reinforcement	steel grade				2	
250							
460							
shear link	reinforcement s	teel grade				2	
250							
460							
type of co	oncrete					1	
Normal We	hight						
Light Weig							
soil name	l					36	
undrained	l shear strength l	limit to adop	t			1	
	•						
Lower Limi Middle Lim							
Upper Lim							
ignore eff	ective cohesion					2	
Include							
Exclude							
- 66 1 -							
errective	angle of friction					5	
1 00%' (Ca	st in Place Concrete	- Soil Interfa	(e)			1.00	
	ecast Concrete - So					0.90	
	nber - Soil Interface					0.85	
	ugh Corrugated Ste		face)			0.80	
	situ Concrete Active					0.66	
	nooth Coated Steel					 0.60	
	situ Concrete Passiv		-	1	1	0.50	

~ ~ ~ ~ ~						Job No	o.	Sheet	No.		Rev.
			g Calculatio	on Sheet				0		_	
ENGI	NEERS	Consulting	Engineers			jХХ	X		1	3	
						Member/L	ocation				
ob Title	Structure,	Member De	esign - Geo	technics Pa	d, Strip and	Drg.		1			
			technics Pa			Made by	xx	Date	21	/11/2021	Chd.
							2171		/	/	
Pad Footi	na Founda	ation Dime	ensions								
Nidth, B _{pac}	. (<= md)							0	.600	m	ОК
	$(>=B_{pad})$.750		ОК
		se slab, t _{1,r}							.200		
		,1	no base slat) b. then ente	r 0.000m)				.000		
			$t_{1,pad} + t_{2,pad}$.200		
			unching she			F	Rectar		.200		
		<u> </u>	ing shear o		ge for Span in			-	-		
			lar) or diam						230	mm	
			ar) or N/A (Luge	The second secon			mm	
			med that h			, and	1 · L	the c			
			ed in the ce						2.4111	-	
						🤛 🛩 pad	<i></i>	– pad i			
Pad Footi	na Founda	tion Doin	forcement								
						+					
			Sagg	ing in lengt	h						
		-		ing in width	· · · · · · · · · · · · · · · · · · ·						
Cogging st	ool roinford	omont diar	notor in wie	1+h ⊥				10	_		
			neter in wid	-				12		mm	
			h for resista		-			-		mm	
Sagging st	eel area pr	ovided in w	vidth, A _{s,prov,}	$x_{,x,s} = (\pi \cdot \phi_{sx})^2$	/4)/p _{sx}			10		mm²/m	
			meter in len	,				12		mm	
			h for resista		1					mm	
Sagging st	eel area pr	ovided in le	ength, A _{s,pro}	_{ν,y,s} = (π.φ _{sy}	²/4)/p _{sy}				754	mm²/m	
										-	
			ar perimete	,				None		mm	
	_		ar perimeter	- 1			2		30	-	
			t shear per		$p_{rov,2} = n_{1,2}$	π.φ _{link,2}	²/4			mm ²	
			hear perime	,				None		mm	
			hear perime						30		
Area provi	ded by all I	inks for sec	ond shear	perimeter,	$A_{sv,prov,3} = I$	n _{I,3} .π.φ _{li}	nk,3 ² /		0	mm ²	
			in width, _{φlin}							mm	
			or bending i		1					/m	
			etre for ben	ding in wid	th, A _{sv,prov,x}	= n _{link}	,x.π.¢			mm²/m	
		ling in widt								mm	
			in length, ϕ							mm	
			or bending i		.,				4	/m	
			etre for ben	ding in leng	gth, A _{sv,prov} ,	_y = n _{lin}	_{k,y} .π.		0	mm²/m	
		ling in leng							150	mm	
Effective d	epth to sag	ging steel	in width, d _x	$_{,s} = T_{pad} - c$	over ₁ - MA	X (φ _{link} ,	2, φ _{lin}		132	mm	
ffective d	epth to sag	ging steel	in length, d	$_{y,s} = T_{pad} -$	cover ₁ - MA	AX (¢link	,2 , φ _{li}		144	mm	
			in length is								l l
t is assum	-						-				ſ
t is assur		÷	antity						<u>59</u>	kg/m ³	
	steel reinfo	orcement qu	adherey								
Estimated				curtailment	; No laps;	Links ig	gnore	ed;			
Estimated			T _{pad}]; No	curtailment	; No laps;	Links ig	gnore	ed;			
Estimated				curtailment	; No laps;	Links ig	gnore	ed;			
Estimated				curtailment	; No laps;	Links i <u>e</u>	gnore	ed;			
Estimated				curtailment	; No laps;	Links i <u>e</u>	gnore	ed;			
Estimated				curtailment	; No laps;	Links i <u>e</u>	gnore	ed;			
Estimated				curtailment	; No laps; .		gnore	ed;			
Estimated				curtailment	; No laps;		gnore	ed;			

U.U.N						Job No.	Sheet No.		Rev.
	ISULTING			on Sheet		jXXX	1	4	
						Member/Location			
Job Title	Structure	Member D	esian - Geol	technics Pao	1 Strin and				
	Member De					Made by XX	Date 21	/11/2021	Chd.
				.,		7.01			
Pad Footi	ing Founda	ation SLS	Loading						
CI C vortio		rd) load fro		and baca de	b (if cuco)	andod) E	20	LINI	01/
	al (downwa y of F _{col,v} fro				ab (ii suspe	ended), F _{col,}	0.025	kN m	ОК
	ty of F _{col,v} from						0.000		
	ontal load fr				d to add to	$b e_1$ eccentr		kN	
	ontal load fr							kN	
	ent from col			-				kNm	
	ent from col							kNm	<u> </u>
	$_{1/h2}$ and M_{co}								ve values;
	g (projectio soil (above							kN kN	
	tional soil at								otina
	round level		-			-			-
	this has a s								
	and exclusiv								
	ssure at fou				0)			kPa	
	ift force at f							kN	
	dation SLS								
	dation SLS			-		F _{pad,v} - F _{wate}			
Total roun	dation SLS	norizontal i	oad, r _{pad,h} =	= (F _{col,h1} +	F _{col,h2})		0	kN	
			1					•	_
		-	l	-	-				
width	of rectangul	lar	. Q	ΡT	-	typical l	oading		
width base =		lar	ep +	PT	►-	typical l combinati	-		
		lar	ep + 1		►		-		
			e _p		•	combinati T = P +	on F		
	в		en +		 	combinati T = P +	-		
	в		e _p +		•- 	combinati T = P + e _T = <mark>P e_F</mark>	an F 5 + M + Hh T		
	в		ep +		•- 	combinati T = P +	an F 5 + M + Hh T		
base =	Н	h	e _B = ABS(F		•	combinati T = P + e _T = <mark>P e_F</mark> M = T e	on F 5 + M + Hh T T		
Equivalent	B H	y in width,				combinati $T = P + e_T = \frac{P e_F}{M} = T e$ M = T e	an F a + M + Hh T T 0.021		
Equivalent Limiting equivalent	t eccentricity for teccentricity	y in width, or no overa y in length,	all uplift (fac $e_L = ABS(F$	ctored), $e_{B,lin}$	$mit = (B_{pad})$ $mit = (B_{pad})$ $mit = (B_{pad})$	combinati T = P + $e_T = \frac{P e_F}{P}$ M = T e M = T e $(-f_{pad}) / F_{pad}$ $(-f_{pad}) / F_{pad}$	on F + M + Hh T T 0.021 0.100	m	
Equivalent Limiting equivalent	B H t eccentricity for	y in width, or no overa y in length,	all uplift (fac $e_L = ABS(F$	ctored), $e_{B,lin}$	$mit = (B_{pad})$ $mit = (B_{pad})$ $mit = (B_{pad})$	combinati T = P + $e_T = \frac{P e_F}{P}$ M = T e M = T e $(-f_{pad}) / F_{pad}$ $(-f_{pad}) / F_{pad}$	on F + M + Hh T T 0.021 0.100	m m	
Equivalent Limiting equivalent Limiting equivalent	B H t eccentricity ccentricity for ccentricity for	y in width, or no overa y in length, or no overa	all uplift (fac $e_{L} = ABS(F)$ all uplift (fac	ctored), $e_{B,Ii}$ $F_{col,v} \cdot e_2 + M_{col}$ ctored), $e_{L,Ii}$	$mit = (B_{pad})$ $mit = (L_{pad})$	combinati T = P + $e_T = \frac{P e_F}{P}$ M = T e M = T e $(-f_{pad}) / F_{pad}$ $(-f_{pad}) / F_{pad}$	on F + M + Hh T T 0.021 0.100 0.000 0.125	m m m	
Equivalent Limiting equivalent Limiting equivalent Limiting equivalent	B H t eccentricity for t eccentricity for ccentricity for ng moment	y in width, or no overa y in length, or no overa in width, M	all uplift (fac $e_L = ABS(F)$ all uplift (fac $ _{ot,B} = M_{col,1}$	tored), $e_{B,li}$ $F_{col,v} \cdot e_2 + M_{col}$ tored), $e_{L,li}$ $+ F_{col,h1} \cdot T_{pac}$	$mit = (B_{pad})$ $mit = (L_{pad})$ $mit = (L_{pad})$	combinati T = P + $e_T = \frac{P e_P}{P}$ M = T e M = T e $(-f_{pad}) / F_{pad}$ $(-f_{pad}) / F_{pad}$ $(-f_{pad}) / F_{pad}$ $(-f_{pad}) / F_{pad}$	on F + M + Hh T 0.021 0.100 0.000 0.125	m m m kNm	
Equivalent Limiting equivalent Limiting equivalent Limiting equivalent Limiting equivalent	B H H t eccentricity for t eccentricity for ccentricity for ng moment moment in	y in width, or no overa y in length, or no overa in width, M width, M _{rt,E}	all uplift (fac $e_{L} = ABS(F)$ all uplift (fac $e_{L} = M_{col,1}$ $e_{ct,B} = M_{col,1}$ $e_{t} = (F_{col,v}, (B))$	tored), $e_{B,II}$ $F_{col,v} \cdot e_2 + M_{col}$ tored), $e_{L,III}$ $+ F_{col,h1} \cdot T_{pac}$ $p_{pad}/2 \cdot e_1) + F_{col} \cdot F_{col}$	$mit = (B_{pad})$ $mit = (L_{pad})$ $mit = (L_{pad})$ d $(F_{under,pad} + $	combinati T = P + $e_T = \frac{P e_P}{P}$ M = T e M = T e $(-f_{pad}) / F_{pad}$ $(-f_{pad}) / F_{pad}$ $(-f_{pad}) / F_{pad}$ $(-f_{pad}) / F_{pad}$	on F + M + Hh T T 0.021 0.100 0.000 0.125 0 0 7	m m m kNm kNm	
Equivalent Limiting equivalent Limiting equivalent Coverturnin Restoring Dverturnin	B H H t eccentricity for ccentricity for ccentricity for ng moment moment in ng moment	y in width, or no overa y in length, or no overa in width, M width, M _{rt,E}	all uplift (fac $e_L = ABS(F$ all uplift (fac $e_{L} = M_{col,1}$ $e_{Col,N} = M_{col,2}$ $e_{Col,N} = M_{col,2}$	tored), $e_{B,II}$ $F_{col,v}.e_2 + M_{col}$ tored), $e_{L,III}$ $+ F_{col,h1}.T_{pac}$ $p_{pad}/2-e_1) + F_{col,h2}.T_{pac}$	$mit = (B_{pad})$ $mit = (L_{pad})$ $mit = (L_{pad})$ d $(F_{under,pad} + d)$	combinati T = P + $e_T = \frac{P e_F}{P}$ M = T e M = T e $(-f_0) / F_{pad}$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$	on F + M + Hh T 0.021 0.100 0.125 0 0 7 0 0	m m kNm kNm kNm	
Equivalent Limiting equivalent Limiting equivalent Coverturnin Restoring Dverturnin	B H H t eccentricity for t eccentricity for ccentricity for ng moment moment in	y in width, or no overa y in length, or no overa in width, M width, M _{rt,E}	all uplift (fac $e_L = ABS(F$ all uplift (fac $e_{L} = M_{col,1}$ $e_{Col,N} = M_{col,2}$ $e_{Col,N} = M_{col,2}$	tored), $e_{B,II}$ $F_{col,v}.e_2 + M_{col}$ tored), $e_{L,III}$ $+ F_{col,h1}.T_{pac}$ $p_{pad}/2-e_1) + F_{col,h2}.T_{pac}$	$mit = (B_{pad})$ $mit = (L_{pad})$ $mit = (L_{pad})$ d $(F_{under,pad} + d)$	combinati T = P + $e_T = \frac{P e_F}{P}$ M = T e M = T e $(-f_0) / F_{pad}$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$	on F + M + Hh T 0.021 0.100 0.125 0 0 7 0 0	m m m kNm kNm	
Equivalent Limiting equivalent Limiting equivalent Coverturnin Restoring Dverturnin	B H H t eccentricity for ccentricity for ccentricity for ng moment moment in ng moment	y in width, or no overa y in length, or no overa in width, M width, M _{rt,E}	all uplift (fac $e_L = ABS(F$ all uplift (fac $e_{L} = M_{col,1}$ $e_{Col,N} = M_{col,2}$ $e_{Col,N} = M_{col,2}$	tored), $e_{B,II}$ $F_{col,v}.e_2 + M_{col}$ tored), $e_{L,III}$ $+ F_{col,h1}.T_{pac}$ $p_{pad}/2-e_1) + F_{col,h2}.T_{pac}$	$mit = (B_{pad})$ $mit = (L_{pad})$ $mit = (L_{pad})$ d $(F_{under,pad} + d)$	combinati T = P + $e_T = \frac{P e_F}{P}$ M = T e M = T e $(-f_0) / F_{pad}$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$	on F + M + Hh T 0.021 0.100 0.125 0 0 7 0 0	m m kNm kNm kNm	
Equivalent Limiting equivalent Limiting equivalent Coverturnin Restoring Dverturnin	B H H t eccentricity for ccentricity for ccentricity for ng moment moment in ng moment	y in width, or no overa y in length, or no overa in width, M width, M _{rt,E}	all uplift (fac $e_L = ABS(F$ all uplift (fac $e_{L} = M_{col,1}$ $e_{Col,N} = M_{col,2}$ $e_{Col,N} = M_{col,2}$	tored), $e_{B,II}$ $F_{col,v}.e_2 + M_{col}$ tored), $e_{L,III}$ $+ F_{col,h1}.T_{pac}$ $p_{pad}/2-e_1) + F_{col,h2}.T_{pac}$	$mit = (B_{pad})$ $mit = (L_{pad})$ $mit = (L_{pad})$ d $(F_{under,pad} + d)$	combinati T = P + $e_T = \frac{P e_F}{P}$ M = T e M = T e $(-f_0) / F_{pad}$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$	on F + M + Hh T 0.021 0.100 0.125 0 0 7 0 0	m m kNm kNm kNm	
Equivalent Limiting equivalent Limiting equivalent Coverturnin Restoring Dverturnin	B H H t eccentricity for ccentricity for ccentricity for ng moment moment in ng moment	y in width, or no overa y in length, or no overa in width, M width, M _{rt,E}	all uplift (fac $e_L = ABS(F$ all uplift (fac $e_{L} = M_{col,1}$ $e_{Col,N} = M_{col,2}$ $e_{Col,N} = M_{col,2}$	tored), $e_{B,II}$ $F_{col,v}.e_2 + M_{col}$ tored), $e_{L,III}$ $+ F_{col,h1}.T_{pac}$ $p_{pad}/2-e_1) + F_{col,h2}.T_{pac}$	$mit = (B_{pad})$ $mit = (L_{pad})$ $mit = (L_{pad})$ d $(F_{under,pad} + d)$	combinati T = P + $e_T = \frac{P e_F}{P}$ M = T e M = T e $(-f_0) / F_{pad}$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$	on F + M + Hh T 0.021 0.100 0.125 0 0 7 0 0	m m kNm kNm kNm	
Equivalent Limiting equivalent Limiting equivalent Coverturnin Restoring Overturnin	B H H t eccentricity for ccentricity for ccentricity for ng moment moment in ng moment	y in width, or no overa y in length, or no overa in width, M width, M _{rt,E}	all uplift (fac $e_L = ABS(F$ all uplift (fac $e_{L} = M_{col,1}$ $e_{Col,N} = M_{col,2}$ $e_{Col,N} = M_{col,2}$	tored), $e_{B,II}$ $F_{col,v}.e_2 + M_{col}$ tored), $e_{L,III}$ $+ F_{col,h1}.T_{pac}$ $p_{pad}/2-e_1) + F_{col,h2}.T_{pac}$	$mit = (B_{pad})$ $mit = (L_{pad})$ $mit = (L_{pad})$ d $(F_{under,pad} + d)$	combinati T = P + $e_T = \frac{P e_F}{P}$ M = T e M = T e $(-f_0) / F_{pad}$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$	on F + M + Hh T 0.021 0.100 0.125 0 0 7 0 0	m m kNm kNm kNm	
Equivalent Limiting equivalent Limiting equivalent Coverturning Restoring Overturning	B H H t eccentricity for ccentricity for ccentricity for ng moment moment in ng moment	y in width, or no overa y in length, or no overa in width, M width, M _{rt,E}	all uplift (fac $e_L = ABS(F$ all uplift (fac $e_{L} = M_{col,1}$ $e_{Col,N} = M_{col,2}$ $e_{Col,N} = M_{col,2}$	tored), $e_{B,II}$ $F_{col,v}.e_2 + M_{col}$ tored), $e_{L,III}$ $+ F_{col,h1}.T_{pac}$ $p_{pad}/2-e_1) + F_{col,h2}.T_{pac}$	$mit = (B_{pad})$ $mit = (L_{pad})$ $mit = (L_{pad})$ d $(F_{under,pad} + d)$	combinati T = P + $e_T = \frac{P e_F}{P}$ M = T e M = T e $(-f_0) / F_{pad}$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$	on F + M + Hh T 0.021 0.100 0.125 0 0 7 0 0	m m kNm kNm kNm	
Equivalent Limiting equivalent Limiting equivalent Coverturnin Restoring Overturnin	B H H t eccentricity for ccentricity for ccentricity for ng moment moment in ng moment	y in width, or no overa y in length, or no overa in width, M width, M _{rt,E}	all uplift (fac $e_L = ABS(F$ all uplift (fac $e_{L} = M_{col,1}$ $e_{Col,N} = M_{col,2}$ $e_{Col,N} = M_{col,2}$	tored), $e_{B,II}$ $F_{col,v}.e_2 + M_{col}$ tored), $e_{L,III}$ $+ F_{col,h1}.T_{pac}$ $p_{pad}/2-e_1) + F_{col,h2}.T_{pac}$	$mit = (B_{pad})$ $mit = (L_{pad})$ $mit = (L_{pad})$ d $(F_{under,pad} + d)$	combinati T = P + $e_T = \frac{P e_F}{P}$ M = T e M = T e $(-f_0) / F_{pad}$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$	on F + M + Hh T 0.021 0.100 0.125 0 0 7 0 0	m m kNm kNm kNm	
Equivalent Limiting equivalent Limiting equivalent Limiting equivalent Coverturnir Restoring Overturnir	B H H t eccentricity for ccentricity for ccentricity for ng moment moment in ng moment	y in width, or no overa y in length, or no overa in width, M width, M _{rt,E}	all uplift (fac $e_L = ABS(F$ all uplift (fac $e_{L} = M_{col,1}$ $e_{Col,N} = M_{col,2}$ $e_{Col,N} = M_{col,2}$	tored), $e_{B,II}$ $F_{col,v}.e_2 + M_{col}$ tored), $e_{L,III}$ $+ F_{col,h1}.T_{pac}$ $p_{pad}/2-e_1) + F_{col,h2}.T_{pac}$	$mit = (B_{pad})$ $mit = (L_{pad})$ $mit = (L_{pad})$ d $(F_{under,pad} + d)$	combinati T = P + $e_T = \frac{P e_F}{P}$ M = T e M = T e $(-f_0) / F_{pad}$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$	on F + M + Hh T 0.021 0.100 0.125 0 0 7 0 0	m m kNm kNm kNm	
Equivalent Limiting equivalent Limiting equivalent Coverturning Restoring Overturning	B H H t eccentricity for ccentricity for ccentricity for ng moment moment in ng moment	y in width, or no overa y in length, or no overa in width, M width, M _{rt,E}	all uplift (fac $e_L = ABS(F$ all uplift (fac $e_{L} = M_{col,1}$ $e_{Col,N} = M_{col,2}$ $e_{Col,N} = M_{col,2}$	tored), $e_{B,II}$ $F_{col,v}.e_2 + M_{col}$ tored), $e_{L,III}$ $+ F_{col,h1}.T_{pac}$ $p_{pad}/2-e_1) + F_{col,h2}.T_{pac}$	$mit = (B_{pad})$ $mit = (L_{pad})$ $mit = (L_{pad})$ d $(F_{under,pad} + d)$	combinati T = P + $e_T = \frac{P e_F}{P}$ M = T e M = T e $(-f_0) / F_{pad}$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$	on F + M + Hh T 0.021 0.100 0.125 0 0 7 0 0	m m kNm kNm kNm	
Equivalent Limiting equivalent Limiting equivalent Coverturning Restoring Overturning	B H H t eccentricity for ccentricity for ccentricity for ng moment moment in ng moment	y in width, or no overa y in length, or no overa in width, M width, M _{rt,E}	all uplift (fac $e_L = ABS(F$ all uplift (fac $e_{L} = M_{col,1}$ $e_{Col,N} = M_{col,2}$ $e_{Col,N} = M_{col,2}$	tored), $e_{B,II}$ $F_{col,v}.e_2 + M_{col}$ tored), $e_{L,III}$ $+ F_{col,h1}.T_{pac}$ $p_{pad}/2-e_1) + F_{col,h2}.T_{pac}$	$mit = (B_{pad})$ $mit = (L_{pad})$ $mit = (L_{pad})$ d $(F_{under,pad} + d)$	combinati T = P + $e_T = \frac{P e_F}{P}$ M = T e M = T e $(-f_0) / F_{pad}$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$	on F + M + Hh T 0.021 0.100 0.125 0 0 7 0 0	m m kNm kNm kNm	
Equivalent Limiting equivalent Limiting equivalent Coverturning Restoring Overturning	B H H t eccentricity for ccentricity for ccentricity for ng moment moment in ng moment	y in width, or no overa y in length, or no overa in width, M width, M _{rt,E}	all uplift (fac $e_L = ABS(F$ all uplift (fac $e_{L} = M_{col,1}$ $e_{Col,N} = M_{col,2}$ $e_{Col,N} = M_{col,2}$	tored), $e_{B,II}$ $F_{col,v}.e_2 + M_{col}$ tored), $e_{L,III}$ $+ F_{col,h1}.T_{pac}$ $p_{pad}/2-e_1) + F_{col,h2}.T_{pac}$	$mit = (B_{pad})$ $mit = (L_{pad})$ $mit = (L_{pad})$ d $(F_{under,pad} + d)$	combinati T = P + $e_T = \frac{P e_F}{P}$ M = T e M = T e $(-f_0) / F_{pad}$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$ $(-f_0) / FOS_3$	on F + M + Hh T 0.021 0.100 0.125 0 0 7 0 0	m m kNm kNm kNm	

CON						Job No.	Sheet No		Rev.
	ISULTING	-	-	on Sheet		jXXX	,	16	
ENUI		concurring	Linginicero	1		-		10	
	_					Member/Loc	ation		
Job Title	1			technics Pa		Drg. Made by	and Data		• Chd
Structure,	Member De	esign - Geo	technics Pa	d, Strip and	a Kaft	Wade by	XX Date 2:	L/11/202	
Pad Footi	ing Founda	ation Reint	forcement	Design					
Gross UL	S Pressure								
Gross ULS	pressure, o	$q_{w,ULS} = F_{col}$	_{,v,uls} / (B _{pad}	. L _{pad})			13	l kPa	
	1	I	l						
		S	hear force	diagram	ר ר				
				nt diagram	╡ ├──				
	\mathbf{v}	Den		ne diagram	┛┢─				
Sagging	Bending M	oment De	sign in Pla	ne of Widt	th				
	t column ba				-(b or D))/2	2] ² / 2		2 kNm	
Moment a	t column ba	se face per	metre, M _x	/L _{pad}				2 kNm/m	_
	moment cap				1000.d _{x,s} 2			5 kNm/m	
	tress, [M/bo							3 N/mm ²	
	tress ratio, , $z_x = d_{x,s}$.						0.00	4 5 mm	ОК
Area of te	$r_{x,s} = u_{x,s}$. nsion steel	<u>[0.5 + (0.2</u> required Δ	= (M / I)] <= 0.95	u _{x,s} f) ⁊ 1			$1 \text{ mm}^2/\text{m}$	
			s,x = (11x/ =p	ad) / [(0.55	'y). ^z x]				
Area of te	nsile steel r	einforceme	nt provided	, As proving			75	4 mm²/m	
	ending mon				= A _{s.x} / A _{s.pr}	OV-X-S	5%	-	ОК
		•			3,7 3,91				
Requireme	ent to conce	entrate 2/3	rebar withi	n 1.5d _{x,s} fro	375	< 4	70 No	0	3.11.3.2
[Yes if L _{pa}	_d /2>3/4(h	or D)+9/4a	l _{x,s} ; No if n	not;]	тт	n	าฑ		BS8110
							ally reflected	in the	
detailing c	consideration	ns and as s	uch should	be specifica	ally reconsi	dered;			
0/ 14			C		1000 -	0050			
	reinforcem				.1000.1 _{pad}	G250; >		8 %	01/
% Min sag	reinforcem	ient in plan	e or wiath i	utilisation			34%	0	ОК
Sagging	Bending M	oment De	sian in Pla	ne of Lenc	l 1th				
Moment a	t column ba	se face, M _v	$= q_{w \parallel s}$.	B _{nad} . [(L _{nad} .	-(h or D))/2	$21^2 / 2$		3 kNm	
	t column ba							4 kNm/m	
Concrete r	moment cap	acity per n	netre, M _{u,y} :	= 0.156f _{cu} .1	000.d _{y,s} ²			3 kNm/m	
	tress, [M/bo							1 N/mm ²	
	tress ratio,						0.00		ОК
	$z_y = d_{y,s}$.							7 mm	
Area of te	nsion steel	equirea, A	_{s,y} = (M _y /B _p	_{bad}) / [(0.95	ι _γ).∠ _γ]			4 mm²/m	
Area of te	 nsile steel r	einforceme	nt provideo	A			75	4 mm²/m	
	ending mon				= A _{cy} / A _c		10%		ОК
					···s,y / ··S,	00,9,5	- 10 /		
Requireme	ent to conce	entrate 2/3	rebar withi	n 1.5d _{v.s} fro	300	< 4	97 No	D	3.11.3.2
	_{ad} /2>3/4(b				mm		าฑ		BS8110
					it is not au	itomatica	ally reflected	in the	
	consideratio								
	reinforcem				4.1000.T _{pac}	g250;		8 %	
% Min sag	reinforcem	ent in plan	e of length	utilisation			34%	0	ОК
	1	1	1	1	1	1	1	1	1


CON	SULTING	Engineerin	a Calculatio	n Chaot		Job No.	Sheet No.		Rev.
	N E E R S			in Sheet		jXXX	1	7	
21101						_			
						Member/Location			
ob Title		Member De					Data a f		du
Structure,	Member De	esign - Geo	technics Pa	d, Strip and	d Raft	Made by XX	Date 21	/11/2021	und.
		<u> </u>							
Punching	Shear Des	sign							
					ah (if avan		=	1.51	
	al (downwa							kN 2	
Area of co	lumn base s	section, A _{c1}	= b.h (rect	tangular) ol	$r \pi D^2/4$ (Cir	cular)	52900		
	ffective dep				+ a _{y,s})/2			mm 2 /	
	nsile steel re							mm^2/m	
	nsile steel re							mm^2/m	
	rea of tensil		iforcement	provided, A	As,prov,s			mm²/m	
w = 100A	s,prov,s/(1000	$\frac{1}{(2\pi)^{1/3}}$	N 1/4		$(100,1)^{1/4}$	0.67	0.55		
$v_{\rm c} = (0.79)$	/1.25)(ρ _w f _{cu}	<u>,/25)^{-/3}(400</u>)/d) ^{-, -} ; ρ _w <	3; f _{cu} <40;	(400/d)*/'>	>0.67	0.75	N/mm ²	
				<u> </u>					
Jolumn B	Base Face F	Perimeter	ļ						
Chart (
Snear forc	e at column	1 Dase face,	$v_1 = F_{col,v,v}$	_{uls} - q _{w,ULS} ./	• _{c1}		1	kN	
	hear force,							kN	
	= 1.00 . V		moment ef	rects have l	been accou	inted for in			,uls i
_olumn ba	ase face per	imeter, u ₁					1	mm	
					ngular		cular		
Internal co				2.(b+h)			N/A	mm	
Edge colur			2b+	h or 2h+b		3/4(π.D)		mm	
Corner col				(b+h)		π.D/2		mm	
Shear stre	ss at colum	in base face	e perimeter	$v_1 = V_{eff,1}$	/ u ₁ d (< 0	.8f _{cu} ^{0.5} & 5N	0.55	N/mm ²	
Ultimate s	hear stress	utilisation					12%		ОК
First Shea	ar Perimet	:er							
Shear forc	e 1.5d from	ו column ba	ase face, V_2	$= F_{col,v,uls} -$	- q _{w,ULS} .A _{c2}		22	kN	
				Rectar	ngular	Circ	cular		
Internal co	olumn:		(b+3	3d).(h+3d)	0.41	$(D+3d)^{2}$	N/A	m ²	
Edge colur	nn: (b+1	.5d).(h+3d) or (h+1.5	5d).(b+3d)	0.28	d).(D+3d)	N/A	m ²	
Corner col	umn:		(b+1.5d)).(h+1.5d)	0.19	$(D+1.5d)^{2}$	N/A	m ²	
Effective s	hear force,	$V_{eff,2} = 1.0$	0.V ₂					kN	
Note V _{eff,2}	= 1.00 . V	′ ₂ because	moment ef	fects have	been accou	inted for in	the derivat	tion of F col,v	uls i
	ase first per						1518		
				Recta	ngular	Circ	ular	1	1
Internal co	lumn:	1	2.(b+h)+12d	-	4D+12d	N/A	mm	1
Edge colur		2	2b+h+6d or			3D+6d		mm	1
Corner col				(b+h)+3d		2D+3d		mm	1
	ess at colum	n base first				20150		N/mm ²	1
	pacity enhar					nort" and a			
	ed v _c as cla								
	against en						-		
								/	
	Case $v_2 <$	↓					VALID		
		No links re	auirod				VALID		
		v ₂ < 1.6 v _c					NI / A		
		$v_2 \setminus 1.0V_c$		<u> </u>			N/A		
		∇ 4 →	$(v - v_c)r$	ud	NI / A		NI / A		
		$\Delta A_{sv} \sin \alpha$	$\geq \frac{(v - v_c)u}{0.95f_y}$	v	N/A	>=	N/A	mm ²	
		Note St	-1	0.4 700.0	<i></i>				
		Note ΣA_i	$_{\rm sv} \sin \alpha >$	0.4ud/0.9	əf _{yv} .				
	1								


CON		F =			1 I		Job No.	Sheet No.		Rev.
	ISULTING	-	-		neet		jXXX		18	
ENGI		consultin		15]////		10	
							Member/Location			
ob Title	Structure,	Member [Design - G	eotecł	nnics Pa	d, Strip an				
Structure,	Member De	esign - Ge	otechnics	Pad, S	Strip and	d Raft	Made by XX	Date 21	/11/202	1 ^{Chd.}
	Case 1.6v	$_{\rm c} < v_2 < 2$	2.0ν _c					N/A		
			5(0.7	n - n	and					
		$\Sigma A_{\rm sv} \sin$	$\alpha \geq \frac{5(0.7)}{0}$	95f		N/A	>=	N/A	mm ²	
			0	.50/ _{yv}						
		Note Σ	$A_{sv}sin\alpha$	> 0.	4ud/0.9	$5f_{yy}$.				
	Case $v_2 >$	2.0v _c						N/A		
irst shea	r perimeter	shear utili	isation					14%		ОК
Second S	hear Perin	neter								
Shear forc	ce 2.25d fro	m column	base face	e, V ₃ =	F _{col.v.us}	- q _{w.ULS} .A	:3	-1	kN	
						ngular		ular		
Internal co	olumn:		(b+4.	5d).(h	+4.5d)	-	$(D+4.5d)^2$		m ²	
	ŕфнŧ2.25d). ((h+4.5d)							m ²	
Corner col			(b+2.25				$(2 + 1164)^{2}$ $(2 + 2.25d)^{2}$		m ²	
	shear force,	$V_{off 3} = 1.$				0.20	121200)		. kN	_
Vote V	$h = 1.00 \cdot V$	because	e moment	effect	s have	l been accol	unted for in			
	ase second								2 mm	,v,uis /
			, u ₃		Recta	ngular	Circ	ular		
Internal co	olumn:			2 (h±k	n)+18d	5	4D+18d		mm	
				-			3D+9d	-	mm	
Edge coluı Corner col			20+11+90)+4.5d		2D+3d			_
	ess at colum	n haco co					20+4.50	-	mm N/mm ²	
Shear Stre					v3 – ve			0.00	IN/11111	_
	Case $v_3 <$									_
		vc No links r	aguirad					VALID		
	Case $v_c <$									
		v ₃ < 1.0	/c		7			N/A		
		54	(v-v)ud		N1 / A		NI / A	2	_
		$\Delta A_{sv} sin$	$\alpha \geq \frac{(v-v)}{0.95}$	$5f_{yy}$		N/A	>=	N/A	mm ²	
		Nutre T	4 1		1 10.0					
	C === 1 C		$A_{\rm sv} \sin \alpha$	> 0.	4ud/0.9	of _{yv} .				_
	Case 1.6v							N/A		_
		V 4 ·	5(0.7	$(v - v_{e})$)ud				2	
		$\Delta A_{sv} \sin \theta$	$\alpha \geq \frac{5(0.7)}{0}$.95f _{vv}		N/A	>=	N/A	mm ²	
						~ ^ _				
	0-		$A_{\rm sv} \sin \alpha$	> 0.	4ud/0.9	əf _{yv} .				_
	Case $v_3 >$	2.0 ν _c						N/A		_
_								 		
second sh	lear perimet	er shear ι	utilisation					0%		ОК
	<u> </u>								ļ	
				-			ed column (
			ter is beyo	ond the	e physic	cal extreme	es of the fou	Indation ar	nd as such	punching
hear failu	ire is not cri	itical;								
	1	ļ				1	-1		-	

1 1/ NN				Charat		Job No.	Sheet No.		Rev.
	ISULTING	-	-	on Sheet		jXXX	1	9	
LIGI				. <u></u>				5	
· ·						Member/Location			
ob Title	-	Member De	-				Data D at		d
tructure,	Member De	esign - Geo	technics Pa	d, Strip and	d Raft	Made by XX	Date 21	/11/2021 ^{cr}	id.
	<u> </u>								
hear De	sign for Be	ending in F	Plane of W	idth					
.		(<u> </u>						
	e at columr				[(B _{pad} -(b or	·D))/2]	18		
	e at column			, ,	 	(D. (h		kN/m	
	ce at 1.0d _{x,s}					(B _{pad} -(D or		kN	
	e at 1.0d _{x,s}				•		7	kN/m	
ote the a	above shear	forces are	for bending	in plane of	f width;				
		<u> </u>						2	
	hear stress					_{bad})/(1000.d		N/mm ²	
ltimate s	hear stress	for bending	j in plane o	f width utili	isation		4%		ОК
	ear stress fo							N/mm ²	
	pacity enhai								
	ed v _c as cla							oport" and	
	g against en				ort" as clau	ise 3.4.5.8	BS8110;)		
rea of ter	nsile steel r	einforceme	nt provided	, A _{s,prov,x,s}			754	mm²/m	
, = 100A	s,prov,x,s/(10	00.d _{x,s})					0.57	%	
.x = (0.7	'9/1.25)(ρ _w f	$f_{cu}/25)^{1/3}(40)$	$00/d_{x,s})^{1/4};$	p _w <3; f _{cu} <4	40; (400/d _x	s) ^{1/4} >0.67	0.77	N/mm ²	
						,57			
heck v _d	x < v _{c,x} for	no links					VALID		
u,		shear capac	ity v _{ev} .(100)0.d _v _)				kN/m	
heck v	 _x < v _{d,x} < 0		or nominal	l links			N/A		
	Provide no	minal links	such that /	\sqrt{S}	/ ////////////////////////////////////) 05f) i o		mm²/mm/n	2
		and nominal				,		kN/m	1
					0.4 + v _{c,x}).	(1000.u _{x,s})	155	KIN/III	
hock v	> 0 4 + 3	for doc	ian linka				N / A		
	x > 0.4 + v						N/A		
	Provide si	iear links A _s and design l	$\frac{1}{10}$ / 5 > 100	$\frac{0.(v_{d,x}-v_{c,x})}{0.(v_{d,x}-v_{c,x})}$)/(0.951 _{yv})	$\frac{1.e.}{0.05}$	0.92	mm ² /mm/n	n
			lliks sliedi		sv,prov,x/⊃ _x).	(0.951 _{yv}).u _x	102	kN/m	
	<u> </u>	<u> </u>							
			tre. As service					2.	
/1		inks per me		,x				mm²/m	
	_{rov,x} / S _x val	lue					0.00	mm²/m mm²/mm/n	
esign she	_{rov,x} / S _x vai ear resistan	lue			Itilisation				n OK
esign she	,	lue			Itilisation		0.00		
esign sho	,	lue			Itilisation		0.00		
esign sho	,	lue			Itilisation		0.00		
esign she	,	lue			Itilisation		0.00		
esign she	,	lue			itilisation		0.00		
esign sh	,	lue			Itilisation		0.00		
esign sh	,	lue			utilisation		0.00		
esign sh	,	lue			Itilisation		0.00		
esign sh	,	lue			Itilisation		0.00		
esign sh	,	lue			Itilisation		0.00		
esign sh	,	lue			Itilisation		0.00		
esign sh	,	lue			Itilisation		0.00		
esign sh	,	lue			Itilisation		0.00		
esign sh	,	lue			Itilisation		0.00		
esign sh	,	lue			Itilisation		0.00		
esign sh	,	lue			Itilisation		0.00		
esign sh	,	lue			Itilisation		0.00		
esign sh	,	lue			Itilisation		0.00		
esign sh	,	lue			Itilisation		0.00		
esign sh	,	lue			Itilisation		0.00		
esign sh	,	lue			Itilisation		0.00		

						Job No.	Sheet No.		Rev.
	ISULTING			on Sheet				0	-
ENGI	NEEKS	Consulting	Linginieers			jXXX	2	0	
						Member/Location			
lob Title		Member De	-			Drg.	1		
Structure,	Member De	esign - Geo	technics Pa	d, Strip and	d Raft	Made by XX	Date 21	/11/2021	hd.
	<u> </u>								
Shear De	sign for Be	ending in F	Plane of Le	ength					
Shoor forc	so at column	haco faco		P	[/] (hor	וכ/נוס	20	LIN	
	e at column				[(L _{pad} -(n or	D))/2]	20		
	e at columr e at 1.0d _{y,s}					(l(h or		kN/m kN	
	ce at 1.0d _{y,s}							kN/m	
	above shear				<i>i</i> i			KIN/III	
Iltimate s	hear stress	for bending	in plane o	flenath, v.	 +=(V+/F	(1000)	0.24	N/mm ²	
	hear stress						5%	,	ок
Design she	ear stress fo	or bending i	in plane of	length, v _{d.v}	$=(V_y/B_{pad})/$	(1000.d _{v.s})	0.11	N/mm ²	
	pacity enha								
	ed v _c as cla								
	n against en								
Area of ter	nsile steel r	einforceme	nt provided	, A _{s,prov,y,s}			754	mm²/m	
$p_{w} = 100A$	s,prov,y,s/(10	00.d _{y,s})					0.52		
$v_{c,y} = (0.7)$	'9/1.25)(ρ _w f	_{cu} /25) ^{1/3} (40)0/d _{y,s}) ^{1/4} ;	ρ _w <3; f _{cu} <4	0; (400/d _y	_{,s}) ^{1/4} >0.67	0.74	N/mm ²	
Check v _{d,}	$y < v_{c,y}$ for						VALID		
	Concrete s	hear capac	ity v _{c,y} .(100	00.d _{y,s})			106	kN/m	
	$y < v_{d,y} < 0$						N/A	2	
	Provide no						0.92	mm²/mm/ı	n
	Concrete a	and nominal	i links snea	r capacity (0.4 + v _{c,y}).	(1000.d _{y,s})	164	kN/m	
hock y	>0.1+	for dec	ian links				N / A		
Check v _{d,}	y > 0.4 + v	/ _{c,y} for des ear links A	ign links	(y - y)	/(0.95f) i	ο Δ / S ·	N/A	$mm^2/mm/l$	~
Check v _{d,}	Provide sh	ear links A _s	v / S > 100)0.(v _{d,y} -v _{c,y}) capacity (A)/(0.95f _{yv}) i /S_)	.e. A _{sv} / S (0.92	mm²/mm/i kN/m	n
Check v _{d,} ,	Provide sh	/ / _{c,y} for des ear links A _s and design l	v / S > 100)0.(v _{d,y} -v _{c,y}) capacity (A	/(0.95f _{yv}) i _{sv,prov,y} /S _y).	.e. A _{sv} / S (0.95f _{yv}).d _y	0.92	mm²/mm/ı kN/m	n
	Provide sh Concrete a	ear links A _s and design l	v / S > 100 inks shear	capacity (A	/(0.95f _{yv}) i _{sv,prov,y} /S _y).	.e. A _{sv} / S (0.95f _{yv}).d _y	0.92 106	kN/m	n
Area provi	Provide sh Concrete a ided by all I	ear links A _s and design l inks per me	v / S > 100 inks shear	capacity (A	/(0.95f _{yv}) і _{sv,prov,y} /S _y).	.e. A _{sv} / S (0.95f _{yv}).d _y	0.92 106	kN/m mm ² /m	
Area provi Tried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S (0.95f _{yv}).d _y	0.92 106	kN/m mm ² /m mm ² /mm/i	n
Area provi Tried A _{sv,pr}	Provide sh Concrete a ided by all I	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S (0.95f _{yv}).d	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	
Area provi Tried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S (0.95f _{yv}).d _y	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	n
Area provi Tried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S (0.95f _{yv}).d	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	n
Area provi Tried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S (0.95f _{yv}).d	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	n
Area provi Tried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S (0.95f _{yv}).d	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	n
Area provi Tried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S (0.95f _{yv}).d	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	n
rea provi ried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S (0.95f _{yv}).d _y	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	n
rea provi ried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S (0.95f _{yv}).d	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	n
rea provi ried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S (0.95f _{yv}).d	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	n
rea provi ried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S (0.95f _{yv}).d _y	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	n
rea provi ried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S (0.95f _{yv}).d	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	n
rea provi ried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S (0.95f _{yv}).d _y	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	n
rea provi ried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S (0.95f _{yv}).d _y	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	n
Area provi Tried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S : (0.95f _{yv}).d _y	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	n
Area provi Tried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S : (0.95f _{yv}).d _y	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	n
Area provi Tried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S (0.95f _{yv}).d _y	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	n
Area provi Tried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S : (0.95f _{yv}).d _y	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	n
Area provi Tried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S : (0.95f _{yv}).d _y	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	n
Area provi Tried A _{sv,pr}	Provide sh Concrete a ided by all I rov,y / Sy val	ear links A _s and design l inks per me ue	v / S > 100 inks shear etre, A _{sv,prov}	capacity (A	_{sv,prov,y} /S _y).	.e. A _{sv} / S : (0.95f _{yv}).d _y	0.92 106 0 0.00	kN/m mm ² /m mm ² /mm/i	n

CON	SULTING	Engineerin	a Calculatio	n Chaot		Job No.	Sheet No.		Rev.
	N E E R S		g Calculatic Engineers	an Sheet		jXXX	2	1	
						Member/Location			
ob Title	Structure,	Member De	esign - Geol	technics Pa	d. Strip and	Drg.			
			technics Pa			Made by XX	Date 21	/11/2021	Chd.
								-	
Dotoiling	Doguirom	onto							
Detailing	Requirem	ents							
All detailing	g requireme	ents met ?					ΝΟΤ ΟΚ		
			pitch in pla					mm	OK
hax sayyır	ig steel reif	norcement	pitch in pla	ine of lengt	n (< 30 _{y,s} , -	50mm)</td <td>150</td> <td>mm</td> <td>ОК</td>	150	mm	ОК
Max	imum spaci	ng: 0.5%	% Ast or less	- 300mm					
			ween 0.5% a 6 Ast or grea						
		1.07	o Asi or grea	ater - 175mi					
	a staal rain	forcomont	pitch in pla	ne of width			150	mm	ОК
	-		pitch in pla					mm mm	OK OK
	-		pitch in pla		-	-		mm	ОК
	-		pitch in pla	-				mm	ОК
vote no all	owance has	s been mad	ie for laps i	n the min p	ntch as not	aeemed to	be require	a;	
% Max sac	iging reinfo	rcement in	plane of wi	dth (<= 0.	04.1000.T _r)	0.38	%	ОК
			plane of le				0.38		ОК
			neter in pla					mm	NOT OF
			neter in pla			6mm)	12	mm	NOT OF
			<u> </u>						
									

		1	1						
0.40ø'								0.40	
0.30ø'								0.30	
0.20ø'								0.20	
0.10ø'								0.10	
0.00ø' (No	Friction In	terface)						0.00	
bearing c	apacity lir	nit to ado	ot					3	
Lower Lim	it								
Middle Lim									
Upper Lim									
bearing c	apacity va	lues from	allowable	bearing c	apacity, B	C _{II,a/ul,a} va	ues or SP [.]	2	
BC _{II,a/ul,a}									
Ν									
factor for	SPT, N va	lue						2	
Undrained	Soil: 42.6							42.6	
Drained So	oil: 30.0							30.0	
ground w	ater level	modificat	ion for bea	aring capa	city		1	2	
<u> </u>				3 P #		GWL >= B		h Flooding	
Cohesive S	Soil	GWL >= B				1.00		_	
Non Cohes		GWL > = B GWL < B				1.00			
Rock		th Flooding				1.00	1.00		
RUCK	VVI					1.00	1.00	1.00	
method o	f analysis							3	
Undrained									
Drained Ar	,								
Empirical A	Analysis								
evaluate	overall up	lift resista	ince					2	
Yes									
No									
foundatio	n type							1	
Pad Footin	-								
Strip Footi									
	nn Footing								
Combined									
Strap Foot	ing								
Raft									
consider	surcharge	above fou	Inding leve	el in net (e	effective)	working p	ressure	1	
Yes									
No									
column b	ase sectio	птуре			1	1	1	1	
Rectangula	ar								
Circular									
					-			-	
column b	ase locatio				2	1	1	2	
Interior									
		th Direction							
Edge for S	pan in Leng	gth Directio	n						

				Job No.	Sheet No.		Rev.
CONSULTING Engi E N G I N E E R S Cons				jXXX	2	24	
				Member/Location			
lah Titla Chrystyre Mar	har Dasian Ca	ata abaica Da	d Ctrip op				
Job Title Structure, Mem Structure, Member Design	ber Design - Geo			Made by XX	Date 21	/11/2021	chd.
Structure, Member Design		au, suip and		XX	21	/11/2021	
Strip Footing Foundatio	n Dimensions						
<u> </u>							
Width, B _{strip}					2.500	m	
Thickness beneath base sl					1.000	m	
Thickness of base slab, $t_{2,s}$			er 0.000m)	0.000	m	
Thickness of foundation, T	$t_{strip} = t_{1,strip} + t_{2,strip}$	strip			N/A	m	
Wall width, b					_	mm	
Note where applicable, it is	s assumed that t	he wall is al	ways interi	or and loca	ted in the c	entre	
of the strip footing B _{strip} ;							
Strin Easting Esundatio	n Doinforcomo						
Strip Footing Foundatio							
							1
	──▋ ┴──┓┍───						
L	Sago	ging in width					
Sagging steel reinforceme	nt diameter, ϕ_s				20 🔻	mm	
Sagging steel reinforceme					200	mm	
Sagging steel area provide	ed, $A_{s,prov,s} = (\pi.\phi)$	² /4)/p _s			N/A	mm²/m	
Shear link diameter, ϕ_{link}						mm	
Number of link legs per me					-	/m	
Area provided by all links	per metre, A _{sv,pro}	$n_{\text{link}} = n_{\text{link}} \cdot \pi \cdot \phi_{\text{link}}$	_{nk} ²/4			mm²/m	
Pitch of links, S					150	mm	
			- /2				
Effective depth to sagging	steel, $a_s = I_{strip}$	- cover ₁ - ϕ_{li}	nk - Øs/ 2		N/A	mm	
Estimated steel reinforcem					N / A	kg/m ³	
$[7.850.(A_{s,prov,s})/T_{strip}]$		t' No lans'	l inks ianor	ed: Distribu		-	
Strip Footing Foundatio	n SLS Loading						
SLS vertical (downward) lo	bad from wall and	d base slab	(if suspend	led), F _{wall,v}	1000	kN/m	N/A
Eccentricity of F _{wall,v} from o					0.100	m	
SLS horizontal load from w	vall, F _{wall,h} (define	ed to add to	e eccentrio	city)	0	kN/m	
SLS moment from wall, M_v	wall (defined to ac	ld to e eccei	ntricity)		0	kNm/m	
Note F _{wall,h} and M _{wall} are o							es;
Strip footing (projection be						kN/m	
Additional soil (above foot						kN/m	<u> </u>
Note additional soil above	-			-			-
is below ground level and							$c \approx \gamma_{sat};$
Note that this has a stabili.	-		ct to destai	ullizing mon	nents, thus	DOTH	
<i>inclusive and exclusive cas</i> Water pressure at founding			0)		NI / A	kPa	
Water uplift force at found			, 0)			kPa kN/m	
Total foundation SLS vertion			 = F + F			kN/m	
Total foundation SLS effect						kN/m	1
			, sup,v	Julip,v Wd		kN/m	1
	, suip,i					,	1
							1
Total foundation SLS horiz							

<i></i>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					Job No.	Sheet No.		Rev.
			g Calculatio	on Sheet				г.	
ENGI	NEERS	Consulting	Engineers			jXXX	2	5	
						Member/Location			
			esign - Geol						1
Structure,	Member De	sign - Geol	technics Pa	d, Strip and	1 Raft	Made by XX	Date 21	/11/2021	hd.
Equivalont	occontricity	- ABS		M + F	T)/F		NI/A	m	
			$S(F_{wall,v}.e +$			strip,v / 6) / FOS ₃	N/A N/A		
					imit – (Dstrip	/ 0) / 1033	N/A	111	
Overturnin	a moment,	$M_{ot R} = M_{w}$	_{all} + F _{wall,h} .T	- ctrip			N/A	kNm/m	
					rin+Fabove soil	I-F _{water}).B _{strij}		kNm/m	
	,						, ,	,	
Maximum g	gross worki	ng pressur	$e, q_{w1} = F_{st}$	$_{rip,v}/B_{strip} +$	6.(F _{wall.v} .e	$+ M_{wall} + F_{v}$, N/A	kPa	
Minimum g	ıross workiı	ng pressure	$e, q_{w2} = F_{stri}$	_{ip,v} /B _{strip} – 6	5.(F _{wall,v} .e +	$- M_{wall} + F_{wall}$			
Maximum g	gross worki	ing pressure	e, $q_{w1} = 2F_{e}$	strip,v/[3.(B _{st}			N/A	kPa	
			$q_{w2} = 0.0$				N/A	kPa	
		$_{\rm p}$ ' = B _{strip} – 2					N/A		
Gross work	king pressu	re, $q_w = F_{st}$	rip,v / B _{strip} '			<u> </u>	N/A	kPa	
						<u> </u>			
Strip Foot	ing Found	lation ULS	Loading		<u> </u>				
					/: c			1.5.7	
						ed), F _{wall,v,u}		kN/m	
						<i>i as the SLS</i>			
Note that t	his enhanc	ement is re	quired to ca	ater for the	moment a	is an enhani	ced load in	the ULS de	sign;
			1						
						-	-		
						1			
						†	1		
						1			
					ļ	ļ			
					L	<u> </u>			
					ļ	<u> </u>			
					ļ	<u> </u>	<u> </u>		
						<u> </u>			
						<u> </u>			
							ļ		
						<u> </u>			
						<u> </u>	ļ		
						<u> </u>			
					ļ				
1		1							
						+			

CONSULTING Engineering Calculation Sheet						Job No.	Sheet No.		Rev.
		Consulting		in Sheet		jXXX		26	
LIGI		y							
						Member/Locati	on		
		Member De							1
Structure,	Member De	esign - Geo	technics Pa	d, Strip and	l Raft	Made by X	X Date 21	/11/2021	hd.
Strip Foot	ting Found	lation Reir	nforcemen	t Design					
Gross ULS	6 Pressure								
Crease LIL C			(D						
Gross ULS	pressure, d	$q_{w,ULS} = F_{wa}$	I,v,uls / B _{strip}				N/A	kPa	
		S	hear force of	liagram	ו ⊢				
	$ \rightarrow $		ding mome		•				
	\mathbf{v}	Den	ang mome	it ulayi am	┛╞──				
Sagging F	Bendina M	oment Des	sian						
			- 5-1						
Moment at	wall face r	ber metre, N	1 = a,	[(B _{strin} -h)/2	$21^2 / 2$		N/A	kNm/m	
			۳w,ULS '	LI-Sup V/L	_ , _				
Concrete n	noment car	acity per m	netre, M., =	0.156f _{cu} .10	00.d _s ²		N/A	kNm/m	
		I^2] = M / [(<u></u>			N/mm ²	
		$K = [M/bd^2]$.156			N/A		N/A
		.5 + (0.25					N/A	mm	
		required, A					N/A	mm²/m	
		einforceme					N/A	mm²/m	
Sagging be	ending mon	nent utilisat	$ion = A_s / A_s$	A _{s,prov,s}			N/A		N/A
		ent (>= 0.		T _{strip} G250;	>= 0.001	3.1000.T			
% Min sag	reinforcem	ent utilisati	on				N/A		N/A

CON	JCULTINC	En elle e enire	. Calaulatia	Chash		Job No.	Sheet No.		Rev.
	ISULTING I N E E R S	-	-	on Sheet		jXXX	2	27	
			5			Member/Location			
	Structuro	Mombor D	ocian Coo	technics Pa	d Strip and				
o Title	Member De					Made by XX	Date 71	/11/2021	Chd.
ucture,		esign - Geo		u, Suip and		~~~~		/11/2021	
ear De	sign								
	ce at wall fa							kN/m	
ear forc	ce at 1.0d _s f	rom wall fa	ice per met	re, v = q _{w,L}	_{JLS} . [(B _{strip} -	·D)/2-a _s j	N/A	kN/m	
imate s	hear stress	V=V/(1	1000.d_) (<	0.8f ^{0.5} &	5N/mm ²)		N/A	N/mm ²	
	shear stress						N/A	-	N/A
sign she	ear stress, v	v _d =V/(1000	.d _s)				N/A	N/mm ²	
	pacity enhai						nparing aga	inst	
	ed v _c as cla							oport" and	
	g against en				ort" as clau	ıse 3.4.5.8		2	
	nsile steel r		nt provided	, A _{s,prov,s}				mm²/m	
	$A_{s,prov,s}/(100)$		$2(1)^{1/4}$	12.6.12	(400(1)) ^{1/4}		N/A		
= (0.79	9/1.25)(ρ _w f _{cι}	,/25)⁺́~(40(J/α _s)⁺′'; ρ _w <	<3; f _{cu} <40;	(400/d _s) ^{1/1}	>0.67	N/A	N/mm ²	
eck v	< v _c for no	linke					N/A		
ver vd	1		ity v _c .(1000).d _c)			-	kN/m	
								KN/III	
eck v _c	< v _d < 0.4	+ v _c for n	ominal lin	ks			N/A		
eck v _c	< v _d < 0.4 Provide no				4.(1000)/(().95f _{vv}) i.e.	N/A		ľm
	Provide no Concrete a > 0.4 + v _c Provide sh	minal links and nomina for desigr ear links A _s	such that A l links shea h links sw / S > 100	$A_{sv} / S > 0.4$ r capacity (00.(v_d - v_c)/(0	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A	mm²/mm/ kN/m	
eck v _d	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a	minal links and nomina for desigr ear links A _s and design l	such that A I links shea I links I links I links shear	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m	
eck v _d	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I	minal links and nomina for design ear links A _s and design l inks per me	such that A I links shea I links I links I links shear	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $\frac{1}{100} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $\frac{1}{100} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	Ím Ím
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $\frac{1}{100} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $\frac{1}{100} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $\frac{1}{100} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $y_{y} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $y_{y} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $y_{y} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $y_{y} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $y_{y} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $y_{y} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $y_{y} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $y_{y} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $y_{y} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $y_{y} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $y_{y} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $y_{y} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $y_{y} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $y_{y} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $y_{y} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $y_{y} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m
ea provi ed A _{sv,pr}	Provide no Concrete a > 0.4 + v _c Provide sh Concrete a ided by all I rov / S value	minal links and nomina for desigr ear links A _s and design l inks per me	such that A I links shea n links $y_{y} / S > 100$ links shear etre, A _{sv,prov}	$A_{sv} / S > 0.4$ r capacity ($0.(v_d - v_c)/(0)$ capacity (A	0.4 + v _c).(1000.d _s) A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm/ kN/m mm²/mm/ kN/m mm²/m	m m m

CON	CONSULTING Engineering Calculation Sheet						Sheet No.		Rev.	
		Consulting				jXXX	2	28		
						Member/Location				
ob Title	Structure,	Member De	esign - Geo	technics Pa	d, Strip and	Drg.				
				d, Strip and		Made by XX Date 21/11/2021 ^{Chd.}				
Detailing	Requirem	ents								
ll detailin	g requireme	ents met ?					N/A			
1ax saggir	ng steel reir	nforcement	pitch (<3d	_s , <750mm	n)		N/A	mm	N/A	
Max	imum spaci		% Ast or less							
				ınd 1.0% - 2 ater - 175mr						
lax saggir	ng steel reir	nforcement	pitch				N/A	mm	N/A	
lin coggin	a staal rain	forcomont	nitch (> 10))			NI/A			
		forcement s been maa			itch as not	deemed to		mm d;	N/A	
% Max sag	iging reinfo	rcement (<	= 0.04.10	00.T _{strip})			N/A	%	N/A	
Sagging st	eel reinforc	ement dian	 neter ל- (>				NI/A	mm	N/A	
Jugging St										

CON	NSULTING Engineering Calculation Sheet INEERS Consulting Engineers					Job No.	Sheet No.		Rev.
	NEERS	Consulting	Engineers	on Sheet		jXXX	2	.9	
2						Member/Location		-	
~ [~	Chrusture	Mambar D	ncian Coo	taabaica Da	d Ctrip and				
				technics Pac d, Strip and		Made by XX	Date 21	/11/2021	hd.
Januara,	Hember De	Jaigh Geo				· •	21	, 11, 2021	
Standard	Strip Foot	ing Found	ation Reir	forcemen	t Details				
	-								
	As per stai	ndard pad f	ooting reini	forcement c	letails, but	in width dii	rection only	<i>';</i>	
					<u> </u>				

CON	SULTING	Engineerin	a Calculatio	on Sheet		Job No. Sheet No.		Rev.	
ENGI	NEERS	Consulting	Engineers	In Sheet		jXXX	30		
						Member/Location			
	Ctructure	Momber D		tochnice D-					
Job Title	Member De	Member De	tochnice Do	d Strip and	u, Strip and	Made by XX	Date 31	/11/2021	hd.
Su ucture,		esign - Geo	lechnics Pa	u, suip and	ΙΚάιι	XX	21	/11/2021	
							<u> </u>		

CON	SULTING	Engineerin	a Calculatio	on Sheet		Job No. Sheet No.			Rev.
ENGI	NEERS	Consulting	Engineers	in Sheet		jXXX	31		
						Member/Location			
1. h. Title	Chrustian	Mambar Dr	aian Caa	tachnica Da					
Job Title	Member De	Member De	tochnics Pa	d Strip and	u, Strip and I Poft	Made by XX	Date 71	/11/2021	thd.
Su ucture,		esign - Geo	lechnics Pa	u, suip and	ΙΚάιι		21	/11/2021	
			<u> </u>						
-			-		-				
l									

CON	SULTING	Engineerin	a Calculatio	on Sheet		Job No. Sheet No.			Rev.
ENGI	SULTING N E E R S	Consulting	Engineers	in Sheet		jXXX	3	2	
						Member/Location			
Job Title	Structure,	Member De	sian - Geo	technics Pa					
	Member De					Made by XX	Date 21	/11/2021	hd.
Structure,							21	11/2021	
					<u> </u>				
									L

CON	SULTING	Engineerin	a Calculatio	on Sheet		Job No. Sheet No.		Rev.	
ENGI	NEERS	Consulting	Engineers	In Sheet		jXXX	33		
		_	-			Member/Location			
lah Titla	Chrusture	Marahan Da	aian Caa	tachnica Da					
Job Title	Member De	Member De	tochnics Pa	d Strip and	u, Strip and I Poft	Made by XX	Date 71	/11/2021	thd.
Structure,		esigii - Geol	lechnics Pa	u, suip and	ΙΚαιί	XX	21	/11/2021	
					<u> </u>				
					<u> </u>				
			<u> </u>						

CONSULTING Engineering Calculation Sheet Dot in the E RS Consulting Engineering Dot in the Calculation Sheet	CON	SULTING	Engineerin	a Calculatio	on Sheet		Job No. Sheet No.			Rev.
Job Title Structure, Member Design - Geotechnics Pad, Strip and	ENGI	NEERS	Consulting	Engineers	In Sheet		jXXX	34		
Job Title Structure, Member Design - Geotechnics Pad, Strip and Drg.										
Join Theory Sector XIII (Sector) Sector XIIII (Sector) Sector XIIIII (Sector) Sector XIIII (Sector) Sector XIIIII (Sector) Sector XIIIII (Sector) Sector XIIIIIIIIII (Sector) Sector XIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1.h. Title	Chrustian	Marahan Da	aian Caa	tachaica Da					
Jourse Call and all all all all all all all all all al		Mombor Dr	Member De	tochnics Pa	d Strip and	u, Strip and I Poft	Made by	Date 71	/11/2021	thd.
Image	Structure,		esigii - Geol	lechnics Pa	u, suip and	ΙΚαιί		21	/11/2021	
Image: Section of the section of t										
Image: Section of the section of t										
Image										
Image <thimage< th="">ImageImageImageI</thimage<>										
Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
Image: sectorImage: sectorImage										
No.										
Image <thimage< th="">ImageImageImage<thi< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thi<></thimage<>										
Image: sector of the sector										
Image										
Image <thimage< th="">ImageImageImage<thi< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thi<></thimage<>										
Image: Problem Imade: Problem Image: Problem Image: Proble										
Image										
Image						<u> </u>				
Image										
Image										
Network <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Image										
Image										
Image										
Image										
Image Image <										
Image: Problem Imade: Problem Image: Problem Image: Proble										
Image: Problem Imade: Problem Image: Problem Image: Proble										
NoteNoteNoteNoteNoteNoteNoteNoteImage										
Image: section of the section of th										
Image										
Image										
Index <td></td>										
Index										
InterpretationInte										
IndexI										
IndexI										
Image: border										
Image: series of the series										
Image: book book book book book book book boo										
Image: book book book book book book book boo										
Image: book book book book book book book boo										
Image: state s										
Image: state of the state of										
Image: series of the series										
Image: series of the series										
Image: series of the series										
Image: series of the series										
Image: selection of the										
Image: state stat										
Image:										
Image: Constraint of the second se										

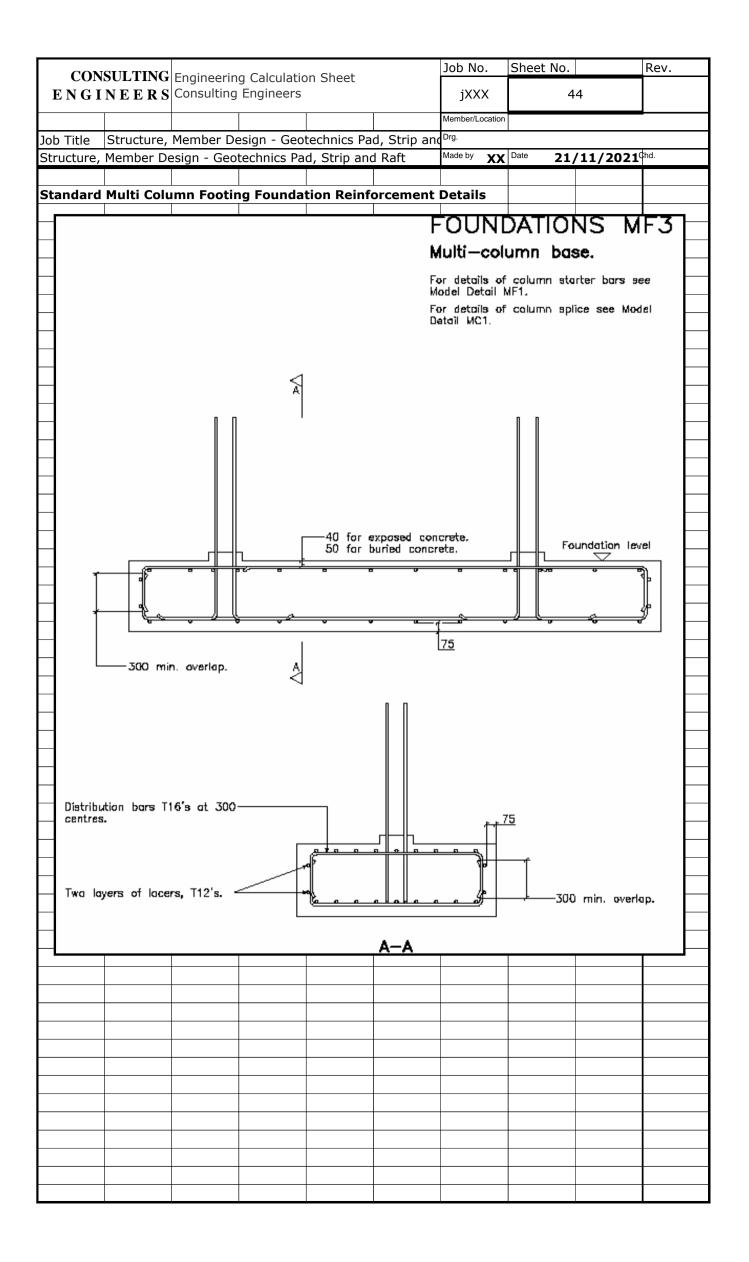
Corner								
nevellel e	n normondioulor to			2	-	-	2	
parallel o	r perpendicular to	edge		2	1	1	2	
Darallal to	Edao	Dorpondic	lar to Edge					
Parallel to			ular to Edge					
Perpendicu	llar to Edge	Parallel to	Euge					
longitudir	nal sagging rebar d	iameter	6	6	6	4	4	
longituun			0	0	6	6	6	
6					0			
8								
10								
12								
16								
20								
25								
32								
40								
longitudir	nal hogging rebar d	iameter			5	5	5	
6								
8								
10								
12								
16								
20								
25								
32								
40								
shear link	diameter		1	1	4	1	1	
			5	1	1	1	1	
None								
6								
8								
10 12								
16								
16								
20								
20 25	embedded footing	•	2	2	3	2	1	
20 25	e embedded footing] 	2	2	2	2	1	
20 25 soil above	e embedded footing]]	2	2	2	2	1 2	
20 25 soil above Include	e embedded footing	J	2	2	2			
20 25 soil above	e embedded footing	J	2	2	2			
20 25 soil above Include Exclude			2	2	2			
20 25 soil above Include Exclude	e embedded footing		2	2	2		2	
20 25 soil above Include Exclude equations		ty factors		2	2		2	
20 25 soil above Include Exclude equations Prandtl, Re	o for bearing capaci	ty factors quations for	Soils	2	2		2	
20 25 soil above Include Exclude equations Prandtl, Re	s for bearing capaci	ty factors quations for	Soils	2	2		2	
20 25 soil above Include Exclude equations Prandtl, Re Kulhawy ar	s for bearing capaci	ty factors quations for	Soils	2	2	2	2	
20 25 soil above Include Exclude equations Prandtl, Re Kulhawy ar	s for bearing capaci eissner and Hansen Ee	ty factors quations for	Soils			2	2	
20 25 soil above Include Exclude equations Prandtl, Re Kulhawy ar shear cas	s for bearing capaci eissner and Hansen Ee	ty factors quations for	Soils			2	2	
20 25 soil above Include Exclude equations Prandtl, Re Kulhawy ar shear cas	s for bearing capaci bissner and Hansen Ed and Goodman Equation e for direction x	ty factors quations for	Soils	3	3	2	2 1 1 1	
20 25 soil above Exclude Exclude equations Prandtl, Re Kulhawy ar shear cas shear cas	e for direction y	ty factors quations for	Soils	3	3	2	2 1 1	
20 25 soil above Exclude Exclude equations Prandtl, Re Kulhawy ar shear cas shear cas	e for direction y	ty factors quations for	Soils	3	3	2	2	
20 25 soil above Include Exclude equations Prandtl, Re Kulhawy ar shear cas	e for direction y	ty factors quations for	Soils	3	3	2	2	
20 25 soil above Exclude Exclude Prandtl, Re Kulhawy ar shear cas shear cas	e for direction y	ty factors quations for	Soils	3	3	2	2	
20 25 soil above Exclude Exclude Prandtl, Re Kulhawy ar shear cas shear cas	e for direction y	ty factors quations for	Soils	3	3	2	2	
20 25 soil above Exclude Exclude equations Prandtl, Re Kulhawy ar shear cas shear cas	e for direction y	ty factors quations for	Soils	3	3	2	2	

CON		E		Charach		Job	No.	Sheet	No.		Rev.
ENGI	SULTING NEERS		ig Calculatio Engineers	on sneet		i	XX		z	5	
					1				J	~	
	<u>.</u>						er/Location				
Job Title			-	technics Pa		and ^{Drg.} Made b		Dete			dha
Structure,	Member De	esign - Geo	technics Pa	d, Strip and	а кагс	Iviaue L	^y XX	Date	21,	/11/2021	
Multi Colu	ımn Eootii	na Founda	tion Dime	ncione							
				when a mor	e efficier	nt use o	f a foo	tina is	reau	uired than	
			-	subject to							
	-			is subject to							
	uous beam			_		<u> </u>					
Width, B _{mu}	_{ilti} (<=L _{multi})						2	.200	m	N/A
	ternal span							3	.500	m	N/A
	beneath ba								.800		
		,		ab, then ent	ter 0.000)m)		0	.000		
			$t_{1,\text{multi}} + t_{2,\text{multi}}$				Destau		N/A	m	
			unching she		 torior		Rectar	igular			
			ing shear o		terior vallel to Ed	00			400	mm	
				neter, D (Pa (circular) Pe			•		400 400		+
				is in same		-	nd th≥	at the c			
				entre of the							1
Multi Colu	umn Footii	ng Founda	tion Reinf	orcement							1
											1
						Hoggin	a in le	nath	1		
						Saggin					
						Sayyin	y in wi				
Sagging st	eel reinford	ement diar	meter in wid	dth, ϕ_{sx}				20	▼	mm	
				ance in wid						mm	
				$f_{,x,s} = (\pi.\phi_{sx})^2$	² /4)/p _{sx}			1		mm²/m	
			neter in ler					20		mm	
				ance in leng						mm	
				$w,y,s = (\pi.\phi_{sy})$,²/4)/p _{sy}					mm²/m	
			meter in ler	,	-			16		mm	
				ance in leng						mm	
Hogging st	eei area pr	ovided in ie	engtn, A _{s,pro}	$p_{v,y,h} = (\pi.\phi_h)$	y /4)/p _{hy}				N/A	mm²/m	
Shear link	diameter fr	r first char	 ar perimete	<u>г</u> фил				None	•	mm	+
			ar perimete	,				None	30		1
				imeter, A _{sv,}	$r_{rov, 2} = r$	L. 1	, ² /4			mm ²	1
			hear perim			י,∠יייי¥iini	N/2 / '	None		mm	1
			hear perim	,					30	<u> </u>	1
			-	perimeter,	A _{sv,prov,3}	= n _{l.3} .π.	$\phi_{\text{link.3}}^2$			mm²	1
				$f_{nk,x} = \phi_{link,2}$.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				mm	
Number of	link legs p	er metre fo	or bending i	n width, n _{lir}	ık,x				4	/m	
				ding in wid		$n_{v,x} = n_{l}$	_{ink,x} .π.¢		N/A	mm²/m	
Pitch of lin	ks for bend	ling in widt	h, S _x							mm	
Shear link				$\eta_{\text{link},y} = \phi_{\text{link},2}$						mm	
				n length, n _l	.,					/m	
Number of				iding in leng	gth, A _{sv,p}	_{rov,y} = r	l _{link,y} .π.			mm²/m	
Number of Area provi			th. S.						150	mm	
Number of Area provi	ded by all I ks for bend	ling in leng			1	1		1			
Number of Area provi Pitch of lin	ks for bend			_							
Number of Area provi Pitch of lin Effective d	ks for bend epth to sag	iging steel	in width, d _x	, _s = T _{multi} -						mm	
Number of Area provi Pitch of lin Effective d Effective d	ks for bend epth to sag epth to sag	iging steel iging steel	in width, d_x in length, d	$_{y,s} = T_{multi} -$	cover ₁ -	MAX (N/A	mm	
Number of Area provi Pitch of lin Effective d Effective d Effective d	ks for bend epth to sag epth to sag epth to hog	iging steel iging steel iging steel	in width, d _x in length, d in length, d	$y_{y,s} = T_{multi} - I_{y,h} = T_{multi} - I_{y,h}$	cover ₁ - - cover ₁	- φ _{hy} /2)link,2 , (N/A		
Number of Area provi Pitch of lin Effective d Effective d Effective d	ks for bend epth to sag epth to sag epth to hog	iging steel iging steel iging steel	in width, d _x in length, d in length, d	$_{y,s} = T_{multi} -$	cover ₁ - - cover ₁	- φ _{hy} /2)link,2 , (N/A	mm	
Number of Area provi Pitch of lin Effective d Effective d Effective d	ks for bend epth to sag epth to sag epth to hog	iging steel iging steel iging steel	in width, d _x in length, d in length, d	$y_{y,s} = T_{multi} - I_{y,h} = T_{multi} - I_{y,h}$	cover ₁ - - cover ₁	- φ _{hy} /2)link,2 , (N/A	mm	

CON		En sin suite				Job No.	Sheet No.		Rev.
	SULTING N E E R S			on Sneet		jXXX	3	36	
			-			Member/Location			
ob Title	Structure,	Member De	sian - Geol	technics Pa	d Strin and				
	Member De		-			Made by XX	Date 21	/11/2021	Chd.
		- J							
								2	
	steel reinfo				curtailman	t. No lanci		kg/m ³	ution stop
7.050 . (/	4 _{s,prov,x,s} +A	s,prov,y,s +A	s,prov,y,h)/ I	multi], NO	curtainnen	t; No laps;			
1ulti Colu	ımn Footir	ng Founda	tion SLS L	oading					
	-	-				ended), F _{col,}		-	N/A
	nn footing (soil (above					$m_{multi} = B_{multi}$			
						otings whe	,	1) Dtina
s below gr	ound level	and backfil	led, for con	servatism t	the saturate	ed soil dens	sity is adop		-
otal found	lation SLS	vertical (do	wnward) lo	ad, F _{multi,v} =	= F _{col,v} + F _u	under,multi + F	N/A	kN	
	100		/ / P					L.D.	
oross work	king pressu	$re, q_w = r_m$	ulti,v / (B _{mult}	i • ∟ _{multi})			N/A	кра	
Aulti Colu	ımn Footir	ng Founda	tion ULS L	oading					
JLS vertica	al (downwa	rd) load fro	m column a	and base sl	ab (if susp	ended), F _{col}	N/A	kN	
					<u> </u>				

	ISULTING	Enginoorin	a Calculati	on Shoot		Job No.	Sheet No.		Rev.
	INEERS					jXXX	3	37	
			-			Member/Location			
	Churchter	Manahan Di		te chuice De	d Chuin and				
lob Title				otechnics Pa			Date 21	/11/202	• Chd
structure,	, Member De	esign - Geo	tecnnics Pa	ad, Strip and				/11/202:	Lond
Multi Col	umn Footii	ng Founda	tion Reinf	forcement	Design				
Gross UL	.S Pressure	 }							_
nored;									
Gross ULS	5 pressure, o	$q_{w,ULS} = F_{col}$, _{v,uls} / (B _{mul}	_{lti} . L _{multi})			N/A	kPa	
]]		
					Shear force				_
`				Be	nding mom	ent diagrai	m		
Saging	Bending M	omont Do	cian in Dia	ano of Wid	+h				_
Sayying									
Moment a	it column ba	l se centrelir	ре М — а		$(B_{\rm m}/2)^2$	/ 2	N / A	kNm	
	it column ba			· ·	(≌multi/∠)	/ _	-	kNm/m	+
. ioniciic u								NOT Y H	1
Concrete	moment cap) Dacity per n	netre, M	= 0.156f ⁻	1000.d _v 2		N/A	kNm/m	1
Bendina s	tress, [M/bo	$d^{2}]_{x} = (M_{v}/L)^{2}$) / [(10	000).d _v ² 1	x,s			N/mm ²	1
	tress ratio,						N/A		N/A
	$r_{x,s} = d_{x,s}$.				d _{y s}		N/A	mm	
	ension steel							mm²/m	
					,			,	
Area of te	nsile steel r	einforceme	nt provideo	d, A _{s,prov,x,s}			N/A	mm²/m	
Sagging b	ending mon	nent in plar	ne of width	utilisation =	= A _{s,x} / A _{s,pr}	ov,x,s	N/A		N/A
Doguissis	·	ntrata 2/2							
Requirem	ent to conce	entrate Z/S	rebar with	in 1.5d _{x,s} fro	N/A	< N/A	N/A		3.11.3.2
	ent to conce _{oulti} /2>3/4(h				N/A mm	< N/A mm	N/A		3.11.3.2 BS8110
[Yes if L _m		or D)+9/4	d _{x,s} ; No if	not;]	тт	mm			
[Yes if L _m Note that	_{nulti} /2>3/4(h	or D)+9/4 above requ	d _{x,s} ; No if irement be	not;] applicable,	mm it is not au	mm tomatically			
[Yes if L _m Note that detailing c	_{ulti} /2>3/4(h should the a consideration	or D)+9/4 above requ ns and as s	d _{x,s} ; No if irement be uch should	not;] applicable, be specific	mm it is not au ally reconsi	<i>mm tomatically dered;</i>	reflected in	n the	
[Yes if L _m Note that detailing o % Min sag	_{uulti} /2>3/4(h should the a consideration g reinforcem	or D)+9/4 above requ ns and as s nent in plan	d _{x,s} ; No if irement be uch should e of width	not;] applicable, be specifica (>= 0.0024	mm it is not au ally reconsi	<i>mm tomatically dered;</i>	reflected in	n the	
[Yes if L _m Note that detailing o % Min sag	_{ulti} /2>3/4(h should the a consideration	or D)+9/4 above requ ns and as s nent in plan	d _{x,s} ; No if irement be uch should e of width	not;] applicable, be specifica (>= 0.0024	mm it is not au ally reconsi	<i>mm tomatically dered;</i>	reflected in	n the	
[Yes if L _m Note that detailing o % Min sag % Min sag	ulti/2>3/4(h should the a consideration g reinforcem g reinforcem	or D)+9/4 above requins and as s nent in plan nent in plan	d _{x,s} ; No if irement be uch should e of width e of width	not;] applicable, be specification (>= 0.0024 utilisation	mm it is not au ally reconsi .1000.T _{mult}	<i>mm tomatically dered;</i>	reflected in	n the	BS8110
[Yes if L _m Note that detailing o % Min sag % Min sag	_{uulti} /2>3/4(h should the a consideration g reinforcem	or D)+9/4 above requins and as s nent in plan nent in plan	d _{x,s} ; No if irement be uch should e of width e of width	not;] applicable, be specification (>= 0.0024 utilisation	mm it is not au ally reconsi .1000.T _{mult}	<i>mm tomatically dered;</i>	reflected in	n the	BS8110
[Yes if L _m Note that detailing o % Min sag % Min sag Sagging	Bending M	or D)+9/4 above requins and as s nent in plan nent in plan oment Des	d _{x,s} ; No if irement be uch should e of width e of width sign in Pla	not;] applicable, be specifica (>= 0.0024 utilisation ane of Leng	mm it is not au ally reconsi .1000.T _{mult}	mm tomatically dered; i G250; >=	reflected in N/A N/A	n the %	BS8110
[Yes if L _m Note that detailing of % Min sag % Min sag Sagging Moment a	should the consideration consideration g reinforcem g reinforcem Bending M at column ba	or D)+9/4 above requins and as s and as s nent in plan nent in plan oment Des oment Des	d _{x,s} ; No if irement be such should e of width e of width sign in Pla ne, M _v = 0.	not;] applicable, be specification (>= 0.0024 utilisation ane of Leng 08 . q _{w,ULS} .	mm it is not au ally reconsi 1.1000.T _{mult} .1000.T g th B _{multi} . L _{mu}	mm tomatically dered; i G250; >=	reflected ii N/A N/A N/A	n the	BS8110
[Yes if L _m Note that detailing of % Min sag % Min sag Sagging Moment a Note mon	Bending M bactors for the second state of the	or D)+9/4 above requins and as s nent in plan nent in plan oment Des oment Des se centrelinent based of	d _{x,s} ; No if irement be uch should e of width e of width sign in Pla ne, M _y = 0.	not;] applicable, be specification (>= 0.0024 utilisation ane of Leng 08 . q _{w,ULS} . span 0.08 in	mm it is not au ally reconsi .1000.T _{mult} .1000.T _{mult} B _{multi} . L _{mu} nstead of e	mm tomatically dered; i G250; >=	<pre>reflected in n/A N/A N/A N/A 11;</pre>	h the % kNm	BS8110
[Yes if L _m Note that detailing of % Min sag % Min sag Sagging Moment a Note mon	should the consideration consideration g reinforcem g reinforcem Bending M at column ba	or D)+9/4 above requins and as s nent in plan nent in plan oment Des oment Des se centrelinent based of	d _{x,s} ; No if irement be uch should e of width e of width sign in Pla ne, M _y = 0.	not;] applicable, be specification (>= 0.0024 utilisation ane of Leng 08 . q _{w,ULS} . span 0.08 in	mm it is not au ally reconsi .1000.T _{mult} .1000.T _{mult} B _{multi} . L _{mu} nstead of e	mm tomatically dered; i G250; >=	<pre>reflected in n/A N/A N/A N/A 11;</pre>	n the %	BS8110
[Yes if L _m Note that detailing o % Min sag % Min sag Sagging Moment a Note mon Moment a	Bending M but column ban but column ban but column ban but column ban but column ban	or D)+9/4 above requ ns and as s nent in plan nent in plan oment Des oment Des se centrelin ent based conse centrelin	d _{x,s} ; No if irement be uch should e of width e of width sign in Pla ne, M _y = 0. on internal ne per met	not;] applicable, be specification (>= 0.0024 utilisation ane of Leng 08 . q _{w,ULS} . span 0.08 in re, M _y /B _{multi}	mm it is not au ally reconsi .1000.T _{mult} .1000.T _{mult} B _{multi} . L _{mu} nstead of e	mm tomatically dered; i G250; >=	reflected ii N/A N/A N/A 11; N/A	h the % kNm kNm/m	BS8110
[Yes if L _m Note that detailing of % Min sag % Min sag Sagging Moment a Note mom Moment a Concrete	Bending M but column ban nent coefficient moment cap	or D)+9/4 above requ ns and as s nent in plan nent in plan oment Des se centrelin ent based c use centrelin pacity per n	$d_{x,s}$; No if irement be uch should e of width e of width sign in Pla me, M _y = 0. on internal me per met	not;] applicable, be specification (>= 0.0024 utilisation ane of Leng 08 . q _{w,ULS} . span 0.08 in re, M _y /B _{multi} = 0.156f _{cu} .	mm it is not au ally reconsi .1000.T _{mult} .1000.T _{mult} B _{multi} . L _{mu} nstead of e	mm tomatically dered; i G250; >=	reflected in N/A N/A N/A 11; N/A N/A	h the % kNm kNm/m kNm/m	BS8110
[Yes if L _m Note that detailing of % Min sag % Min sag Sagging Moment a Note mom Moment a Concrete Bending s	Bending M balt column ba nent coefficient moment cap tress, [M/bc	or D)+9/4 above requins and as s nent in plan nent in plan oment Des oment Des se centreling ent based consecutive pacity per n d ²] _y = (M _y /E	$d_{x,s}$; No if irement be uch should e of width e of width sign in Pla sign in Pla ne, M _y = 0. on internal ne per met metre, M _{u,y} B_{multi}) / [(10)	not;] applicable, be specifica (>= 0.0024 utilisation ane of Leng 08 . q _{w,ULS} . span 0.08 in re, M _y /B _{multi} = 0.156f _{cu} . 000).d _{y,s} ²]	mm it is not au ally reconsi .1000.T _{mult} .1000.T _{mult} B _{multi} . L _{mu} nstead of e	mm tomatically dered; i G250; >=	<pre> reflected in N/A N/A </pre>	h the % kNm kNm/m kNm/m N/mm ²	BS8110 N/A T.3.5 BS8110
[Yes if L _m Note that detailing of % Min sag % Min sag Sagging Moment a Note mon Moment a Concrete Bending s Bending s	Bending M but column ba moment cap moment cap btress ratio,	or D)+9/4 above requins and as s nent in plan nent in plan oment Des oment Des se centrelin ent based conse centrelin pacity per n d ²] _y = (M _y /E K _y = [M/bd	$\begin{array}{c} d_{x,s}; \text{ No if} \\ \text{irement be} \\ \text{uch should} \\ \\ \text{e of width} \\ \\ \text{e of width} \\ \\ \text{sign in Pla} \\ \\ \text{sign in Pla} \\ \\ \text{ne, } M_{y} = 0. \\ \\ \text{on internal} \\ \\ \text{ne per met} \\ \\ \\ \text{netre, } M_{u,y} \\ \\ \\ \text{multi}) / [(10^{2}]_{y} / f_{cu} < = 0) \\ \end{array}$	not;] applicable, be specification (>= 0.0024 utilisation ane of Leng 08 . q _{w,ULS} . span 0.08 in re, M _y /B _{multi} = 0.156f _{cu} . 000).d _{y,s} ²] = 0.156	mm it is not au ally reconsi .1000.T _{mult} .1000.T _{mult}	mm tomatically dered; i G250; >=	reflected in N/A N/A N/A 11; N/A N/A N/A N/A	h the % % kNm kNm/m kNm/m kNm/m	BS8110
[Yes if L _m Note that detailing of % Min sag % Min sag % Min sag Sagging Moment a Note mon Moment a Concrete Bending s Bending s Lever arm	Bending M moment cap moment cap stress, [M/bc bt zy = d _{y,s} .	or D)+9/4 above requins and as s nent in plan nent in plan oment Date oment Date se centreling pacity per n d^2] _y = (M _y /E K _y = [M/bd [0.5 + (0.2)]	$d_{x,s}$; No if irement be such should e of width e of width sign in Pla sign in Pla me, M _y = 0. on internal me per mett metre, M _{u,y} $B_{multi}) / [(10^2)_y / f_{cu} <= 25 - K_y / 0.9)^0$	not;] applicable, be specification (>= 0.0024 utilisation ane of Leng 08 . $q_{w,ULS}$. span 0.08 in re, M_y/B_{multi} = 0.156f _{cu} . 000).d _{y,s} ²] = 0.156 .0.5] <= 0.95	mm it is not au ally reconsi 4.1000.T _{mult} .1000.T _{mult} b gth b b b b b b b b b b b c b b b c b c b	mm tomatically dered; i G250; >=	<pre>reflected in reflected in N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</pre>	h the % kNm kNm/m kNm/m N/mm ² mm	BS8110 N/A T.3.5 BS8110
[Yes if L _m Note that detailing of % Min sag % Min sag % Min sag Sagging Moment a Note mom Moment a Concrete Bending s Bending s Lever arm	Bending M but column ba moment cap moment cap btress ratio,	or D)+9/4 above requins and as s nent in plan nent in plan oment Date oment Date se centreling pacity per n d^2] _y = (M _y /E K _y = [M/bd [0.5 + (0.2)]	$d_{x,s}$; No if irement be such should e of width e of width sign in Pla sign in Pla me, M _y = 0. on internal me per mett metre, M _{u,y} $B_{multi}) / [(10^2)_y / f_{cu} <= 25 - K_y / 0.9)^0$	not;] applicable, be specification (>= 0.0024 utilisation ane of Leng 08 . $q_{w,ULS}$. span 0.08 in re, M_y/B_{multi} = 0.156f _{cu} . 000).d _{y,s} ²] = 0.156 .0.5] <= 0.95	mm it is not au ally reconsi 4.1000.T _{mult} .1000.T _{mult} b gth b b b b b b b b b b b c b b b c b c b	mm tomatically dered; i G250; >=	<pre>reflected in reflected in N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</pre>	h the % % kNm kNm/m kNm/m kNm/m	BS8110 N/A T.3.5 BS8110
[Yes if L m Note that detailing of % Min sag % Min sag Sagging Moment a Note mon Moment a Concrete Bending s Bending s Lever arm Area of te	$uulti / 2 > 3/4 (h)$ should the acconsideration g reinforcem g reinforcem g reinforcem Bending M at column ba nent coefficient at column ba moment cap ttress, [M/bc ttress ratio, n, $z_y = d_{y,s}$. ension steel	or D)+9/4 above requins and as s nent in plan nent in plan oment Des nee centrelinent based of ase centrelinent based of case centrelinent based of $d^2]_y = (M_y/E$ $K_y = [M/bd]$ [0.5 + (0.2) required, A	$\begin{array}{c} d_{x,s}; \text{ No if} \\ \text{irement be} \\ \text{uch should} \\ \\ e \text{ of width} \\ \\ e \text{ of width} \\ \\ \text{sign in Pla} \\ \\ \text{sign in Pla} \\ \\ \text{sign in remainded} \\ \\ \text{sign in ternal} \\ \\ \text{ne, } M_y = 0. \\ \\ \text{on internal} \\ \\ \text{ne, } M_y = 0. \\ \\ \\ \text{on internal} \\ \\ \text{netre, } M_{u,y} \\ \\ \\ \text{metre, } M_{u,y} \\ \\ \\ \\ \text{metre, } M_{u,y} \\ \\ \\ \\ \text{metre, } M_{u,y} \\ \\ \\ \\ \\ \\ \text{metre, } M_{u,y} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	not;] applicable, be specification (>= 0.0024 utilisation ane of Leng .08 . $q_{w,ULS}$ span 0.08 in re, M_y/B_{multi} = 0.156fcu 000).dy,s ²] = 0.156 .0.5] <= 0.95	mm it is not au ally reconsi 4.1000.T _{mult} .1000.T _{mult} b gth b b b b b b b b b b b c b b b c b c b	mm tomatically dered; i G250; >=	<pre> reflected in reflected in N/A N N N</pre>	h the % % kNm kNm/m kNm/m kNm/m mm ² mm mm ² /m	BS8110 N/A T.3.5 BS8110
[Yes if L m Note that detailing of % Min sag % Min sag % Min sag Sagging Moment a Note mon Moment a Roment a Bending s Bending s Lever arm Area of te	uulti / 2 > 3/4 (h) $should the acconsideration consideration g reinforcem g reinforcem $	or D)+9/4 above requins and as s nent in plan nent in plan nent in plan oment Description ose centrelin pacity per n $d^2]_y = (M_y/E)$ Ky = [M/bd] [0.5 + (0.2) required, A einforceme	$\begin{array}{c} d_{x,s}; \text{ No if} \\ irement be \\ uch should \\ e of width \\ e of width \\ \\ \textbf{sign in Pla} \\ \textbf{sign in Pla} \\ \\ \textbf{si Pla} \\ \\ \textbf{sign in Pla} \\ \\ \textbf{sign in Pla} \\ \\ \textbf{si Pla} \\ \\ $	not;] applicable, be specification (>= 0.0024 utilisation ane of Leng 08 . $q_{w,ULS}$. span 0.08 in re, M_y/B_{multi} = 0.156f _{cu} . 000).d _{y,s} ²] = 0.156 5] <= 0.95	mm it is not au ally reconsi .1000.T _{mult} .1000.T _{mult}	mm tomatically dered; i G250; >= tti ² nd span 0.2	<pre> reflected in reflected in N/A N/A </pre>	h the % kNm kNm/m kNm/m N/mm ² mm	BS8110 N/A T.3.5 BS8110
[Yes if L m Note that detailing of % Min sag % Min sag % Min sag Sagging Moment a Note mon Moment a Roment a Bending s Bending s Lever arm Area of te	$uulti / 2 > 3/4 (h)$ should the acconsideration g reinforcem g reinforcem g reinforcem Bending M at column ba nent coefficient at column ba moment cap ttress, [M/bc ttress ratio, n, $z_y = d_{y,s}$. ension steel	or D)+9/4 above requins and as s nent in plan nent in plan nent in plan oment Description ose centrelin pacity per n $d^2]_y = (M_y/E)$ Ky = [M/bd] [0.5 + (0.2) required, A einforceme	$\begin{array}{c} d_{x,s}; \text{ No if} \\ irement be \\ uch should \\ e of width \\ e of width \\ \\ \textbf{sign in Pla} \\ \textbf{sign in Pla} \\ \\ \textbf{si Pla} \\ \\ \textbf{sign in Pla} \\ \\ \textbf{sign in Pla} \\ \\ \textbf{si Pla} \\ \\ $	not;] applicable, be specification (>= 0.0024 utilisation ane of Leng 08 . $q_{w,ULS}$. span 0.08 in re, M_y/B_{multi} = 0.156f _{cu} . 000).d _{y,s} ²] = 0.156 5] <= 0.95	mm it is not au ally reconsi .1000.T _{mult} .1000.T _{mult}	mm tomatically dered; i G250; >= tti ² nd span 0.2	<pre> reflected in reflected in N/A N N N</pre>	h the % % kNm kNm/m kNm/m kNm/m mm ² mm mm ² /m	BS8110 N/A T.3.5 BS8110
[Yes if L m Note that detailing of % Min sag % Min sag % Min sag Sagging Moment a Note mon Moment a Note mon Moment a Bending s Bending s Lever arm Area of te Sagging b	uulti / 2 > 3/4 (h) $should the acconsideration consideration g reinforcem g reinforcem $	or D)+9/4 above requins and as s nent in plan nent in plan nent in plan oment Design abse centreling abse centreling bacity per n $d^2]_y = (M_y/E$ $K_y = [M/bd]$ $[0.5 + (0.2)]$ required, A einforceme nent in plan	$\begin{array}{c} d_{x,s}; \text{ No if} \\ irement be \\ uch should \\ e of width \\ e of width \\ sign in Pla \\ sign in Pla \\ sign in Pla \\ ne, M_y = 0. \\ on internal \\ ne per met \\ \\ netre, M_{u,y} \\ netre, M_{u,y} \\ (110) \\ (110) \\ (12$	not;] applicable, be specificable, be specificable, (>= 0.0024 utilisation ane of Leng ane of Leng and ane of Leng and ane of Leng and and and and and and and and and and and and and and and and and and and	mm it is not au ally reconsi .1000.Tmult .1000.Tmult .1000.Tmult .1000.Tmult .1000.Tmult .1000.dy,s .1000.dy,s .1000.dy,s .1000.dy,s	mm tomatically dered; i G250; >= i d span 0.1	<pre> reflected in reflected in N/A N/</pre>	n the % % kNm kNm/m kNm/m kNm/m mm ² mm mm ² /m	BS8110 N/A T.3.5 BS8110 N/A
[Yes if L m Note that detailing of % Min sag % Min sag % Min sag Sagging Moment a Note mon Moment a Roncrete Bending s Bending s Lever arm Area of te Sagging b Requirem	uulti/2 > 3/4(h) $should the acconsideration consideration g reinforcem g reinforcem $	or D)+9/4 above requins and as s nent in plan nent in plan nent in plan oment Description oment based consective pacity per n d ²] _y = (M _y /E K _y = [M/bd [0.5 + (0.2 required, A einforceme nent in plan	$d_{x,s}$; No if irement be uch should e of width e of width sign in Pla sign in Pla sign in Pla me, M _y = 0. on internal ne per meti $metre, M_{u,y}$ $B_{multi}) / [(10^2]_y / f_{cu} <= 25-K_y/0.9)^0$ s,y = $(M_y/B_y)^0$ nt provided ne of length rebar with	not;] applicable, be specification (>= 0.0024 utilisation ane of Leng ane of Leng $08 . q_{w,ULS} . span 0.08 in span 0.08 in re, My/Bmulti = 0.156fcu. 000).d_{y,s}^2] = 0.156 0.156 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160 0.160<$	$\begin{array}{c} mm \\ it is not au \\ ally reconsi \\ 1000.T_{mult} \\ \vdots \\ 1000.T_{mult} \\ gth \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	mm tomatically dered; i G250; >=	<pre> reflected in reflected in N/A N/A </pre>	n the % % kNm kNm/m kNm/m kNm/m mm ² mm mm ² /m	BS8110 N/A T.3.5 BS8110 N/A N/A 3.11.3.2
[Yes if L m Note that detailing of % Min sag % Min sag % Min sag Sagging Moment a Note mom Moment a Note mom Moment a Concrete Bending s Bending s Lever arm Area of te Sagging b Requirem [Yes if B m	uulti/2 > 3/4(h) $should the acconsideration consideration g reinforcem g reinforcem $	or D)+9/4 above requins and as s nent in plan nent in plan nent in plan oment Description oment based consective per n d ²] _y = (M _y /E K _y = [M/bd [0.5 + (0.2) required, A einforceme nent in plan or D)+9/4	$d_{x,s}$; No if irement be uch should e of width e of width sign in Pla sign in Pla metre, M _u , = 0. on internal ne per metr B_{multi}) / [(10 $^{2}]_{v}$ / f _{cu} <= 25-K _y /0.9) ⁰ s,y = (M _y /B) nt provideo ne of length rebar withind $d_{y,s}$; No if	not;] applicable, be specificable, be specificable, l be specificable, (>= 0.0024 utilisation ane of Leng ane of Leng ane of Leng ane of Leng ane of Leng base of Leng ane of	mm it is not au ally reconsi ally reconsi .1000.Tmult	mm tomatically dered; i G250; >= nd span 0.:	<pre> reflected in reflected in N/A N/</pre>	n the % % kNm kNm/m kNm/m kNm/m mm ² mm mm ² /m	BS8110 N/A T.3.5 BS8110 N/A
[Yes if L m Note that detailing of % Min sag % Min sag % Min sag Sagging Moment a Note mom Moment a Concrete Bending s Bending s Lever arm Area of te Sagging b Requirem [Yes if B m Note that	uulti/2 > 3/4(h) $should$ the acconsideration $consideration g reinforcem g reinforcem or D)+9/4above requins and as snent in plannent in planoment in planoment Desneed controllingobse centrellingbase centrellingbase centrellingd^2]_y = (M_y/EK_y = [M/bd] [0.5 + (0.2)]required, Aeinforcement in planentrate 2/3b or D)+9/4above requiredd_{x,s}; No ifirement beuch shoulde of widthe of widthsign in Plasign in Plaine, My = 0.on internalne per metmetre, Mu,yB_{multi}) / [(10^{2}]_{y} / fcu <=25$ -K _y /(0.9) ⁰ s,y = (M _y /B) int provided ne of length rebar withi $d_{y,s}$; No if irement be	or D)+9/4 above requins and as s nent in plan nent in plan oment in plan oment Des need controlling obse centrelling base centrelling base centrelling $d^2]_y = (M_y/E$ $K_y = [M/bd] [0.5 + (0.2)]$ required, A einforcement in plan entrate 2/3 b or D)+9/4 above required	$d_{x,s}$; No if irement be uch should e of width e of width sign in Pla sign in Pla ine, M _y = 0. on internal ne per met metre, M _{u,y} B_{multi}) / [(10 $^{2}]_{y}$ / f _{cu} <= 25	not;] applicable, be specificable, be specificable, (>= 0.0024 utilisation ane of Leng ane of Leng a	mm it is not au ally reconsi	mm tomatically dered; i G250; >= nd span 0.2 prov,y,s < N/A mm tomatically	<pre> reflected in reflected in N/A N/</pre>	n the % % kNm kNm/m kNm/m kNm/m mm ² mm mm ² /m	BS8110 N/A T.3.5 BS8110 N/A N/A 3.11.3.2
[Yes if L m Note that detailing of % Min sag % Min sag % Min sag Sagging Moment a Note mom Moment a Concrete Bending s Bending s Lever arm Area of te Sagging b Requirem [Yes if B m Note that	uulti/2 > 3/4(h) $should the acconsideration consideration g reinforcem g reinforcem $	or D)+9/4 above requins and as s nent in plan nent in plan oment in plan oment Des need controlling obse centrelling base centrelling base centrelling $d^2]_y = (M_y/E$ $K_y = [M/bd] [0.5 + (0.2)]$ required, A einforcement in plan entrate 2/3 b or D)+9/4 above required	$d_{x,s}$; No if irement be uch should e of width e of width sign in Pla sign in Pla ine, M _y = 0. on internal ne per met metre, M _{u,y} B_{multi}) / [(10 $^{2}]_{y}$ / f _{cu} <= 25-K _y /(0.9) ⁰ s,y = (M _y /B) int provided ne of length rebar withi $d_{y,s}$; No if irement be	not;] applicable, be specificable, be specificable, (>= 0.0024 utilisation ane of Leng ane of Leng a	mm it is not au ally reconsi	mm tomatically dered; G250; >= 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre> reflected in reflected in N/A N/</pre>	n the % % kNm kNm/m kNm/m kNm/m mm ² mm mm ² /m	BS8110 N/A T.3.5 BS8110 N/A N/A 3.11.3.2
[Yes if L m Note that detailing of % Min sag % Min sag % Min sag Sagging Moment a Note mom Moment a Note mom Moment a Concrete Bending s Bending s Lever arm Area of te Sagging b Requirem [Yes if B m Note that detailing of	uulti/2 > 3/4(h) $should the acconsideration consideration g reinforcem g moment cap g ressing steel g ressile steel g reinforcem g ressile steel g ressile steel g rending mon g ressile steel g ressile steel g ressile steel g ressile steel g ressile $	or D)+9/4 above requins and as s nent in plan nent in plan nent in plan nent in plan oment Design abse centrelin pacity per n d ²] _y = (M _y /E K _y = [M/bd [0.5 + (0.2 required, A einforceme nent in plar entrate 2/3 o or D)+9/4 above requing ns and as s	$d_{x,s}$; No if irement be uch should e of width e of width sign in Pla sign in Pla ne, M _y = 0. on internal ne per meta netre, M _{u,y} B _{multi}) / [(10 ²] _y / f _{cu} <=	not;] applicable, be specificable, be specificable, (>= 0.0024 utilisation ane of Leng 08 . $q_{w,ULS}$. span 0.08 in re, M_y/B_{multi} = 0.156f _{cu} . 000). $d_{y,s}^2$] = 0.156 $p_{s,prov,y,s}$ n utilisation in 1.5d _{y,s} from in 1.5d _{y,s} from <i>in 1.5d_{y,s}</i> fro	$\begin{array}{c} mm \\ it is not au \\ ally reconsi \\ 1000.T_{mult} \\ 1000.T_{mult} \\ \\ \hline \\ gth \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	mm tomatically dered; i G250; >= nd span 0.: prov,y,s < N/A mm tomatically dered;	<pre> reflected in reflected in N/A N/</pre>	n the % % kNm kNm/m kNm/m kNm/m mm ² /m mm ² /m mm ² /m	BS8110 N/A T.3.5 BS8110 N/A N/A 3.11.3.2
[Yes if L m Note that detailing of % Min sag % Min sag Sagging Moment a Note mon Moment a Concrete Bending s Bending s Lever arm Area of te Sagging b Requirema [Yes if B m Note that detailing of % Min sag	uulti/2 > 3/4(h) $should$ the acconsideration $consideration g reinforcem g reinforcem or D)+9/4 above requins and as s nent in plan nent in plan nent in plan nent in plan oment Design abse centrelin nse centrelin pacity per n d2]y = (My/E Ky = [M/bd [0.5 + (0.2 required, A einforceme nent in plan entrate 2/3 or D)+9/4 above requins and as s nent in pland_{x,s}; No if irement be uch should e of width e of width sign in Pla sign in Pla ne, My = 0. on internal ne per met metre, Mu,y Bmulti) / [(10 ^2]y / fcu <= 25-Ky/0.9)0 s,y = (My/B) nt provided ne of length rebar within d_{y,s}; No if irement be uch should e of length$	or D)+9/4 above requins and as s nent in plan nent in plan nent in plan nent in plan oment Design abse centrelin nse centrelin pacity per n d ²] _y = (M _y /E K _y = [M/bd [0.5 + (0.2 required, A einforceme nent in plan entrate 2/3 or D)+9/4 above requins and as s nent in plan	$d_{x,s}$; No if irement be uch should e of width e of width sign in Pla sign in Pla ne, My = 0. on internal ne per met metre, Mu,y Bmulti) / [(10 2]y / f _{cu} <=	not;] applicable, be specification (>= 0.0024 utilisation ane of Leng $ane of Leng$ $ane of Jobs ang 0.08 interproteins ang 0.08 inter $	$\begin{array}{c} mm \\ it is not au \\ ally reconsi \\ 1000.T_{mult} \\ 1000.T_{mult} \\ \\ \hline \\ gth \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	mm tomatically dered; i G250; >= nd span 0.: prov,y,s < N/A mm tomatically dered;	<pre> reflected in reflected in N/A N/</pre>	n the % % kNm kNm/m kNm/m kNm/m mm ² /m mm ² /m mm ² /m	BS8110 N/A T.3.5 BS8110 N/A N/A 3.11.3.2

CON		E a si sa si s	- Calaulatia	Charak		Job No.	Sheet No.		Rev.
		Engineerin Consulting	-	on Sheet		jXXX		38	
ENGI		concurring			1			<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	_					Member/Location			
Job Title		Member De	-				Data	(111)	dea
Structure,	Member De	esign - Geol	technics Pa	d, Strip and	d Raft	Made by XX	Date 21	/11/2021	Cha.
Hoaaina I	Bendina M	oment De	sion in Pla	ne of Len	 ath				
Moment, M	$I_v = 0.07$.	q _{w,ULS} . B _{mul}	L_{multi}^2				N/A	kNm	Т.3.5
		ent based o		span 0.07 ii	nstead of e	nd span 0.(BS8110
Moment pe	er metre, M	_y /B _{multi}					N/A	kNm/m	
		bacity per m			L000.d _{y,h} ²			kNm/m	
		$[J^2]_y = (M_y/E)$						N/mm ²	
		$K_{y} = [M/bd^{2}]$				<u> </u>	N/A		N/A
Lever arm,	$z_y = a_{y,h}$.	[0.5 + (0.2 required, A _s	<u>'</u> ::::::::::::::::::::::::::::::::::::	< = 0.95	u _{y,h} 5f) 7 1			mm mm²/m	
			_{3,y} – (11 _y / D _n					m /m	
Area of ter	nsile steel n	einforcemei	nt provided	, As provide			N/Δ	mm²/m	1
Hoggina be	ending mon	nent in plar	ie of length	utilisation	$= A_{s.v} / A_{c}$	L prov.v.h	N/A		N/A
					3, , , 5,			•	
Requireme	nt to conce	entrate 2/3	rebar withi	n 1.5d _{v.h} fro	N/A	< N/A	N/A	<u></u>	3.11.3.2
		or D)+9/4		, ,	, mm				BS8110
		above requi			it is not au	itomatically	reflected i	n the	
detailing co	onsideratio	ns and as s	uch should	be specifica	ally reconsi	dered;			
							<u> </u>		
		nent in plan			4.1000.T _{ml}	_{ulti} G250; >:			
% Min hog	reinforcem	nent in plan	e of length	utilisation			N/A		N/A
								-	1
						+	+	+	1
	<u> </u>						+	+	1
						+		1	1
						†	+	1	1
						1	+	1	1
			ļ				<u> </u>		<u> </u>
						<u> </u>	<u> </u>		
			ļ					<u> </u>	
			<u> </u>		<u> </u>	<u> </u>		<u> </u>	1
								<u> </u>	1
						+	+	+	
						+	+	+	
							+	+	
									1
									1
		ļ	l			+			
		.							


CONSULTING		e Celevietia	ch a at		Job No.	Sheet No.		Rev.
CONSULTING E N G I N E E R S			JII Sheet		jXXX	3	39	
		1	1		Member/Location			
ob Title Structure	, Member De	l esian - Geo'	technics Pa	d Strip and	Drg.			
Structure, Member D					Made by XX	Date 21	/11/2021	Chd.
			u, serip une				/11/2021	•
Punching Shear De	sign							
JLS vertical (downwa	ard) load fro) om column ;	and base sl	ab (if susp	ended), F _{col}	N/A	kN	
Area of column base	section, A _{c1}	= b.h (rect	tangular) o	r πD²/4 (cir	cular)	N/A	mm ²	
Average effective de	pth of both I	rebar layers	$s, d = (d_{x,s})$	+ d _{y,s})/2		N/A	mm	
Area of tensile steel	reinforceme	nt provided	, A _{s,prov,x,s}			N/A	mm²/m	
Area of tensile steel	reinforceme	nt provided	, A _{s,prov,y,s}			N/A	mm ² /m	
Average area of tens				As.prov.s			mm ² /m	
$p_{w} = 100A_{s,prov,s}/(100)$						N/A		
$v_{\rm c} = (0.79/1.25)(\rho_{\rm w}f_{\rm c})$	$(25)^{1/3}(400)$	$(d)^{1/4}$; out	3: f_<40:	(400/d) ^{1/4} >	>0.67		N/mm ²	
	<u>.u/_2/ (100</u>	/-/ /PW	-, - <u>cu</u> - / · · · · · · · · · · · · · · · · · · 				••,•••	1
Column Base Face	Perimeter							
Choor force at column								
Shear force at colum			uls - Y _{w,ULS} .F	^ c1			kN	
Effective shear force						N/A	kN	1
Note $V_{eff,1} = 1.00$.		no moment	t effects ass	sumed ;				
Column base face pe	rimeter, u ₁	<u> </u>					mm	1
				ngular		ular		
internal column:			2.(b+h)	N/A	<i>π.D</i>	-	mm	
Edge column:		2b+	h or 2h+b	N/A	3/4(π.D)	N/A	mm	
Corner column:			(b+h)	N/A	π.D/2	N/A	mm	
Shear stress at colur	nn base face	e perimeter	$v_1 = V_{eff.1}$	/ u ₁ d (< 0	.8f _{cu} ^{0.5} & 5N	N/A	N/mm ²	
Jltimate shear stress						N/A	-	N/A
First Shear Perime	tor							
Shear force 1.5d from	n column ba	ase face, V ₂	$= F_{col, y, uls} -$	$- \mathbf{q}_{w w s} \mathbf{A}_{c2}$		N/A	kN	
				ngular	Circ			
Internal column:		(b+?	3d).(h+3d)	-	$(D+3d)^{2}$		m ²	
	1.5d).(h+3d				d).(D+3d)		m ²	
Corner column: (D+)		1).(h+1.5d)		$(D+1.5d)^2$		m ²	
	<u> </u>	, ,).(<i>II+1.50)</i>	N/A	D+1.5a)			
Effective shear force	1		t offects -	cumo de		IN/A	kN	
Note $V_{eff,2} = 1.00$.		no moment	t effects as	sumed;				
Column base first pe	rımeter, u ₂	ļ	ļ				mm	1
			Rectar	-		ular		
nternal column:			b+h)+12d		4D+12d	-	mm	
Edge column:	2	2b+h+6d or			3D+6d	N/A	mm	<u> </u>
Corner column:			(b+h)+3d		2D+3d	N/A	mm	
Shear stress at colur	nn base first	t perimeter,	$v_2 = V_{eff,2}$	/ u ₂ d		N/A	N/mm ²	
Shear capacity enha	ancement by	[,] calculating	v_d at 1.50	d from "sup	oport" and c	comparing a	against	
inenhanced v _c as cl	ause 3.7.7.6	5 BS8110 e	mployed in	nstead of	calculating	v _d at "supp	port" and	
comparing against ei	nhanced v _c	within 1.5d	of the "sup	pport" as cl	lause 3.7.7.	4 BS8110;)	
			ļ					1
Case v ₂ <						N/A		1
	No links re							1
Case v_c <	< v ₂ < 1.6 v _c					N/A		
		(v-v)	ud					
	$\Sigma A_{\rm sv} \sin \alpha$	$t \ge \frac{(v - v_c)u}{0.95f_v}$		N/A	>=	N/A	mm ²	
	Note ΣA	$_{sv}sin\alpha$ >	0.4 <i>ud</i> /0.9	5f _{yv} .				
		1	1	1	1	1	1	I

						Job No.	Sheet No.		Rev.
	ISULTING								
ENGI	INEERS	Consulting	, Engineers	•		jXXX	4	-0	
						Member/Location			
Job Title	Structure,	Member D	esign - Geo	otechnics Pa	d, Strip an	IC Drg.	1		
	Member De		-			Made by XX	Date 21	/11/202:	L ^{Chd.}
,	· · · ·								
	+		+						_
			-						
			<u> </u>						
									_
	Case 1.6v	$c < v_2 < 2$.0ν _c				N/A		
		-	$\epsilon \geq \frac{5(0.7v)}{0.95}$	$-v_c$) ud					
		$\Sigma A_{sv} sino$	(≥	5 <i>f</i>	N/A	>=	N/A	mm ²	
		Note ΣA	$s_{sv}sin\alpha >$	0.4ud/0.9	$95f_{yy}$.				
	Case $v_2 >$	2.0 v _c					N/A		
First shea	r perimeter	shear utilis	ation				N/A		N/A
Second S	hear Perin	neter	+						
			+						
Shear for	ce 2.25d fro	m column '	base face	$V_2 = F_{a-1}$	- <u>a.</u>	-2	N/A	kN	
					ngular		ular		1
Internal	olumni		(h 1 1 5-		-			m ²	
Internal co		(b. 4 5 .))	•	1).(h+4.5d)		$(D+4.5d)^2$			
	m bn ŧ2.25d).('					.(D+4.5d)		m ²	
Corner col				.(h+2.25d)	N/A)+2.25d) ²		m²	
	shear force,						N/A	kN	
Note V _{eff,3}	$_{3} = 1.00 . V$	3 because	no momen	nt effects as	sumed;				
Column ba	ase second p	perimeter,	U ₃					mm	
				Recta	ngular	Circ	cular		
Internal co	olumn:		2.	(b+h)+18d		4D+18d	N/A	mm	
Edge colui		:		r 2h+b+9d		3D+9d		mm	
Corner col				(b+h)+4.5d		2D+4.5d		mm	
	ess at colum	n hase sec				2017.30		N/mm ²	
				$v_3 - v_6$	ent,3 / ugu		N/A	11/11111	-
	Cacat		+				NI / A		
	Case $v_3 <$	-					N/A		
		No links re							
	Case $v_c <$	ν ₃ < 1.6ν _α					N/A		
			$(v-v_{-})$	ud					
		$\Sigma A_{sv} \sin \alpha$	$\epsilon \geq \frac{(v - v_c)}{0.95f_c}$		N/A	>=	N/A	mm ²	
				<i></i>					
		Note , ΣA	$s_{sv}sin\alpha >$	0.4ud/0.9	$95f_{yy}$.				
	Case 1.6v	$c < v_3 < 2$.0vc	TL			N/A		
							-		
		$\Sigma A_{} \sin \theta$	$\epsilon \geq \frac{5(0.7v)}{0.92}$	$-v_{c}$)ud	N/A	>=	N/A	mm ²	
	+	svento	0.9	5f _{yv}	,	-	,.		
		Note ΣA	$s_{sv}sin\alpha >$	0.4ud/0.9	5f				1
	Case $v_3 >$		syonia	0.400.0	Jyv.		N / A		
		2.0%c	+				N/A		
<u> </u>	<u> </u>	<u> </u>							
Second sh	near perimet	er snear u	tilisation				N/A		N/A
		L	<u> </u>		<u> </u>				
	gative shear								
	that the she		er is beyon	d the physic	cal extreme	es of the fou	Indation an	d as such	punching
indicates t		itical;	ļ						
indicates t	ire is not cri	· · · ·	1						
indicates t									
indicates t									
indicates t									
indicates t									
indicates t									
indicates t									
indicates t									
indicates t									

			e Celevietia	Chast		Job No.	Sheet No.		Rev.
	SULTING	-	-	on Sheet		jXXX	4	1	
		j		<u></u>				-	
						Member/Location			
ob Title		Member De	-		· · ·		Data		الم ما
tructure,	Member De	esign - Geo	technics Pa	d, Strip and	d Raft	Made by XX	Date 21	/11/2021	na.
hear De	sign for Be	ending in F	Plane of W	idth					
	e at columr					/2	N/A		
	e at columr			/				kN/m	
	e at 1.0d _{x,s}								
	e at 1.0d _{x,s}					L _{multi}	N/A	kN/m	
ote the a	bove shear	forces are	for bending	in plane o	f width;				
timate s	hear stress	for bending	g in plane o	f width, v _{ult}	$t_{t,x} = (V_{x,ult}/L_r)$	_{nulti})/(1000.	N/A	N/mm ²	
timate s	hear stress	for bending	g in plane o	f width utili	isation		N/A		N/A
esign she	ear stress fo	or bending	in plane of	width, v _{d,x} =	=(V _x /L _{multi})/	(1000.d _{x,s})	N/A	N/mm ²	
	pacity enhai								
	$ed v_c$ as cla								
	against en								
	nsile steel r					_		mm²/m	
= 100A	s prov x s/(100	00.d _{x s})					N/A		
= (0.7)	9/1.25)(ρ _w f	$f_{1/25}^{1/3}(40)$	$10/d$ $)^{1/4}$	n < 3' f. <4	10·(400/d) ^{1/4} >0.67		N/mm ²	
, <u>x</u> – (0.7	<u></u>		, (), (), (), (), (), (), (), (), (), ()	Jw ~ J , r _{cu} ~ 1	$\left[\right]$	(,s) > 0.07		11/11/11	
heck v .	x < v _{c,x} for	no links					N/A		
		shear capac	ity y (100)0 d)			_	kN/m	
			$\nabla_{c,x}$	10.u _{x,s})			N/A	KIN/III	
hacky				Linka					
песк v _{с,} ,	$x < v_{d,x} < 0$	$\frac{1.4 + V_{c,x}}{1.4 + V_{c,x}}$					N/A	2	
	Provide no					,		mm²/mm/i	n
	Concrete a	and nominal	l links sheai	r capacity ($0.4 + v_{c,x}$).	$(1000.d_{x,s})$	N/A	kN/m	
			<u> </u>						
heck v _{d,:}	x > 0.4 + v						N/A		
		ear links A _s						mm²/mm/ı	n
	Concrete a	and design l	inks shear	capacity (A	$sv, prov, x/S_x).$	(0.95f _{yv}).d _x	N/A	kN/m	
os nrovi			atura A						
	ded by all li		etre, A _{sv,prov}	,х				mm²/m	
ied A _{sv,pr}	_{rov,x} / S _x val	ue						mm²/m mm²/mm/i	n
ied A _{sv,pr}		ue			ıtilisation				
ied A _{sv,pr}	_{rov,x} / S _x val	ue			ıtilisation		N/A		
ried A _{sv,pr}	_{rov,x} / S _x val	ue			utilisation		N/A		m N/A
ied A _{sv,pr}	_{rov,x} / S _x val	ue			Itilisation		N/A		
ied A _{sv,pr}	_{rov,x} / S _x val	ue			utilisation		N/A		
ied A _{sv,pr}	_{rov,x} / S _x val	ue			utilisation		N/A		
ied A _{sv,pr}	_{rov,x} / S _x val	ue			Itilisation		N/A		
ied A _{sv,pr}	_{rov,x} / S _x val	ue			Itilisation		N/A		
ied A _{sv,pr}	_{rov,x} / S _x val	ue			utilisation		N/A		
ied A _{sv,pr}	_{rov,x} / S _x val	ue			Itilisation		N/A		
ied A _{sv,pr}	_{rov,x} / S _x val	ue			Itilisation		N/A		
ied A _{sv,pr}	_{rov,x} / S _x val	ue			utilisation		N/A		
ied A _{sv,pr}	_{rov,x} / S _x val	ue			utilisation		N/A		
ied A _{sv,pr}	_{rov,x} / S _x val	ue			utilisation		N/A		
ied A _{sv,pr}	_{rov,x} / S _x val	ue			utilisation		N/A		
ied A _{sv,pr}	_{rov,x} / S _x val	ue			utilisation		N/A		
ied A _{sv,pr}	_{rov,x} / S _x val	ue			utilisation		N/A		
ied A _{sv,pr}	_{rov,x} / S _x val	ue			utilisation		N/A		
ried A _{sv,pr}	_{rov,x} / S _x val	ue			utilisation		N/A		
ried A _{sv,pr}	_{rov,x} / S _x val	ue					N/A		
ried A _{sv,pr}	_{rov,x} / S _x val	ue			utilisation		N/A		
ied A _{sv,pr}	_{rov,x} / S _x val	ue			Itilisation		N/A		

CO)						Job No.	Sheet No.		Rev.
	ISULTING			on Sheet		jXXX	1	2	
ENGI		consulting	Lingineers	I	I	_		2	
						Member/Location			
ob Title	-	Member De	-		· ·	Drg.	-		d
Structure,	Member De	esign - Geo	technics Pa	d, Strip and	d Raft	Made by XX	Date 21	/11/2021	Chd.
									ļ
Shear De	sign for Be	ending in F	Plane of Le	ength					
Choor for		hace contr	roling V					LAN
	e at column						N/A	KN	T.3.5
	r coefficient					span 0.6;		kN/m	BS8110
	ce at column ce at 1.0d _{y,s}					B	N/A		
	ce at 1.0d _{y,s}						-	kN/m	
	above shear					D _{multi}	N/A	KIN/III	
		TUILES are		j ili plane u	l length,				
Iltimato c	hoar stross	for bonding	in nland o	flongth v	/		N / A	N/mm ²	
	hear stress hear stress					multi // (1000	N/A N/A	19/1111	N/A
numate S					Ποατίθη		N/A		N7 A
)esian ch	ear stress fo	l or hending i	in plane of	length v	=(V/R)	/(1000 d		N/mm ²	<u> </u>
	bacity enha			.,	,				
	ed v _c as cla								
	against en								
	nsile steel r					130 5.4.5.0	-	mm²/m	
	s,prov,y,s/(10			, As,prov,y,s			N/A N/A	-	
$v_{\rm w} = 1007$	′9/1.25)(ρ _w f	· /25) ^{1/3} (/()0/d) ^{1/4} .		10· (400/d) ^{1/4} >0.67		N/mm ²	
r _{c,y} – (0.7	9/1.23)(p _w i	_{cu} /23) (40	, (), μ _{γ,s}	Pw ~ 3, i _{cu} ~¬	10, (400/0 _y	,s) >0.07		11/11111	
heck v.	y < v _{c,y} for	no links					N/A		
check v _d ,	-	hear capac)0 d)			-	kN/m	
			ις ν _{ς,γ} .(100	joid _{y,s} j					
Check v	y < v _{d,y} < 0	4 + y for	or nominal	l links			N/A		
		minal links).95f) i.e.		mm²/mm/	l m
		and nominal						kN/m	
						(,s)			
Check va	y > 0.4 + y	, , , , for desi	ian links				N/A		
u,		ear links A _s		0.(vv.))/(0.95f _w) i	.e. A _a / S :	-	mm²/mm/	l 'm
		and design I						kN/m	
					sv,prov,yr - y / -	(
Area prov	ided by all I	inks per me	etre, A _{sy prov}				N/A	mm²/m	
	, _{rov,y} / S _y val		, 30,0100	/ /				mm²/mm/	i m
	ear resistan		ling in plane	e of length	utilisation		N/A		N/A
									1
									1
									1
									<u> </u>
									<u> </u>
									
									

CON	SULTING	Engineerin	n Calculatio	n Shaat		Job No.	Sheet			Rev.
	N E E R S			JII Sheet		jXXX		43		
						Member/Locati	ion			
b Title	Structure,	Member De	esign - Geo	technics Pa	d, Strip and	Drg.				
	Member De		-			Made by X	X Date	21/1	1/2021	Chd.
•								-	-	
etailing	Requirem	ents								_
ll detailin	ng requirem	ents met ?					N//	A		_
		- f +						NI / A		
	ng steel rei ng steel rei				,			N/A m		N/A N/A
	ing steel rei				11-			N/A m		N/A N/A
					(() u y,h,		,			
Ma	ximum spaci	ng: 0.5%	% Ast or less	s - 300mm						
		Bet		and 1.0% - 2						
		1.0%	% Ast or gre	ater - 175mr	n					1
										1
ax saggi	ng steel rei	nforcement	pitch in pla	ane of width	1			N/A m	Im	N/A
ax saggi	ng steel rei	nforcement	pitch in pla	ane of lengt	h			N/A m	Im	N/A
ax hoggi	ing steel rei	nforcement	pitch in pla	ane of leng	h			N/A m	Im	N/A
	ng steel rein							N/A m		N/A
	ng steel rein		· · · ·	-	-	,.		N/A m		N/A
	ng steel reir			_		,.		N/A m		N/A
to an al						roacing th		by the	e har di.	ameter.
ne an ai	llowance ha	s been mad	le for laps i	in the min p	oitch by inc	easing th	ne criteria		e bui ui	1
			-		-					
Max sa	gging reinfo	rcement in	plane of w	idth (<= 0.	04.1000.T _r	_{nulti})		N/A %)	N/A
Max sa Max sa	gging reinfo gging reinfo	rcement in rcement in	plane of w plane of le	idth (<= 0. ngth (<= 0	04.1000.T _r .04.1000.T	nulti) multi)		N/A %)	N/A N/A
Max sa	gging reinfo	rcement in rcement in	plane of w plane of le	idth (<= 0. ngth (<= 0	04.1000.T _r .04.1000.T	nulti) multi)		N/A %)	N/A N/A
Max sa Max sa Max ho	gging reinfo gging reinfo gging reinfo	rcement in rcement in prcement in	plane of w plane of le plane of le	idth (<= 0. ngth (<= 0 ength (<= 0	04.1000.T, .04.1000.T 0.04.1000.T	nulti) multi) multi)		N/A % N/A % N/A %)))	N/A N/A N/A
Max sa Max sa Max ho agging s	gging reinfo gging reinfo gging reinfo gging reinfo teel reinforo	rcement in rcement in prcement in ement diar	plane of w plane of le plane of le neter in pla	idth (<= 0. ngth (<= 0 ngth (<= 0 ne of width	04.1000.T _r .04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm)		N/A % N/A % N/A %	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N/A N/A N/A
Max sa Max sa Max ho Max ho agging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar ement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho agging si agging si	gging reinfo gging reinfo gging reinfo gging reinfo teel reinforo	rcement in rcement in prcement in ement diar ement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A %		N/A N/A N/A
Max sa Max sa Max ho agging si agging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar ement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho agging si agging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar cement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho agging si agging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar cement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho agging s agging s	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar cement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho agging s agging s	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar cement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho ngging si ngging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar cement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho ngging si ngging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar cement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho ngging si ngging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar cement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho gging si gging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar cement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho gging si gging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar cement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho gging si gging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar cement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho gging si gging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar cement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho gging si gging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar cement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho ngging si ngging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar ement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho agging si agging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar ement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho ngging si ngging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar ement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho ngging si ngging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar ement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho agging si agging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar ement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho agging si agging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar ement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho agging si agging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar ement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho Max ho agging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar ement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho Max ho agging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar ement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A
Max sa Max sa Max ho agging si agging si	gging reinfo gging reinfo gging reinfo gging reinforo teel reinforo teel reinforo	rcement in rcement in prcement in ement diar ement diar	plane of w plane of le plane of le neter in pla neter in pla	idth (<= 0. ngth (<= 0 ength (<= 0 ne of width	$04.1000.T_{r}$.04.1000.T 0.04.1000.T	nulti) multi) multi) multi) 5mm) 6mm)		N/A % N/A % N/A % N/A m N/A m		N/A N/A N/A N/A

CON	SULTING	Engineerin	a Calculatio	on Sheet		Job No.	Sheet No.		Rev.
ENGI	NEERS	Consulting	Engineers	in Sheet		jXXX	4	5	
						Member/Location			
Job Title	Structure	Member De	esian - Geol	technics Pa					
	Member De	esian - Geot	technics Pa	d. Strip and	l Raft	Made by XX	Date 21	/11/2021	hd.
Structure,								11/2021	
					<u> </u>				
			<u> </u>		1				


~~~							Job No	).	Shee	t No.		Rev.
	ISULTING			on Sheet		ſ				4	6	
ENGI		consulting	Ligineers				jXX			4	0	
							Member/Lo	ocation				
ob Title		Member De	-			and	Drg.		Doto			dbd
structure,	Member De	esign - Geo	technics Pa	d, Strip a	nd Raft		Made by	XX	Date	21,	/11/2021	Lona.
Combino	d Footing l	Foundation	Dimoncia	nc								
	the combine				efficient	1150	of a fo	otina	n is re	auire	d than	
	ional pad fo									-		
	employmen	-									-	
	noments a									-		
oth sagg	ing and hog	ging mome	nts akin to	a continu	ious bear	n or	slab. A	l cor	nbine	d foot	ing differs	
rom a mι	ılti column f	footing in th	e fact that	the colur	nn loads a	are r	not uni	form	, and	thus	require	
	imensions o		ined footing	l be such	that the	resu	ltant lo	oad p	basses	s thro	ugh the	
entroid o	<i>f the base a</i>	irea;										
									-	1 200		
	$m (<=L_{com})$ $m (>=B_{com})$	)								2.300 1.600		N/A
	ernal span,		)							4.600 3.000		N/A N/A
	$y_c = (F_{col,v,2})$								-	N/A		
	ternal span,			.000)						N/A		N/A
	ternal span,				000)					N/A		N/A
	combined fo					s a fu	<i>inction</i>	of t	he loa	-		
Should the	e relative lo	ads vary gr	eatly, the e	ffectiven	ess of the	e con	nbined	foot	ting re	educe	s;	
			L _{com}				►					
	I						7.♠					
		→ y	C				$\square$					
							В	com				
	Column 1				Column 2	2						
L							_↓↓					
	cpm,1		L _{com,3}			om,2	▶					
	beneath ba	se slab, t _{1.c}							(	0.800	m	
	of base sla	1 -	-	b, then e	nter 0.00	0m)				0.000		
Thickness	of foundation	on, $T_{com} = t$	$t_{1,com} + t_{2,com}$	m						N/A	m	
Column ba	ase section	type <i>(for pι</i>	inching she	ar only)			R	ectan	gular	▼		
	ase location		-		Interior			— <del>-</del>		▼		
	base depth					-		▼			mm	
	base width,						Edge	▼			mm	
	base depth base width,					-	۲۹۹۹	▼ -			mm mm	
	re applicable						-	▼ as I	a			mn
	vays interio											
							<u> </u>	con		<b>J</b>	com,	
Combine	d Footing I	Foundation	n Reinforc	ement								
			Нодд	ing in len	gth							
				ing in len								
												_
Sagaing o	teel roinford								20	•	mm	
	teel reinford teel reinford				idth n				20		mm mm	
	teel area pr										mm²/m	-
	teel reinford				<u>57 1 1 HSX</u>				20	-	mm	
	teel reinford			,	ngth, p _{sv}					200	mm	1
	teel area pr				- 1	y					mm²/m	1
logging s	teel reinford	cement diar	neter in len	gth, $\phi_{hy}$					16	•	mm	
	teel reinford				,						mm	
logging s	teel area pr	ovided in le	ength, A _{s,pro}	$v,y,h = (\pi.$	φ _{hy} ²/4)/p _h	ıy				N/A	mm²/m	
					_							
	1	1										

CON						Job No.	Sheet No		Rev.
	ISULTING			on Sheet		jXXX		47	
Endi						Member/Location		17	
Job Title	Structuro	Mombor D	 esign - Geo	tochnics Pa	d Strip and	Drg.			
	Member De		-			Made by XX	Date 2	1/11/2021	Çhd.
Structure,								1/11/2021	
	diameter fo			,			None 🗨	mm	
	f link legs fo					2	3	-	
	ided by all I				$p_{rov,2} = n_{l,2}$	$\pi \cdot \phi_{\text{link},2}^2/4$		A mm ²	
	diameter fo			1-				mm	
	f link legs fo ided by all l				<u>ــــــــــــــــــــــــــــــــــــ</u>	n. π. μ. ² /	3 N /	A mm ²	
Shear link	diameter fo	or bendina	in width, du	perimeter, n	¬sv,prov,3 — I	1,3• <i>π</i> •Ψlink,3 /		0 mm	
	f link legs p			1 1	l Ik.x			4 /m	
	ided by all I				,	$= n_{\text{link.x}}.\pi.\phi$		A mm ² /m	
Pitch of lir	nks for bend	ling in widtl	h, S _x			,		0 mm	
	diameter fo							0 mm	
	f link legs p				.,			<mark>4</mark> /m	
	ided by all I			ding in leng	gth, A _{sv,prov,}	$y = n_{\text{link},y}.\pi$ .		A mm ² /m	<b> </b>
Pitch of lir	iks for bend	ling in lengt	tn, S _y				15	<mark>0</mark> mm	
Effortivo	lonth to co-	aina ataal :		 _   _		V (+ 1	N1 /	A mm	
	lepth to sag lepth to sag	iging steel i	in length d	<u>,s = 1_{com} - C – T –</u>	$cover_1 - MA$	ΔΧ (Φlink,2, Φlir ΔΧ (Δ	IN/	A mm A mm	
	lepth to bog							A mm	
	ned that sag								
Estimated	steel reinfo	prcement qu	Jantity				N/	A kg/m ³	
[ 7.850 . (	$(A_{s,prov,x,s} + A)$	A _{s,prov,y,s} +A	s,prov,y,h)/	T _{com} ]; No a	curtailment	; No laps; L		red; Distrib	ition steel i
Combine	d Footing l	Foundatio	n SLS Loac	ling					
	al (downwa				•			0 kN	N/A
	al (downwa footing (pr	-						0 kN	N/A
	soil (above							A kN A kN	
				1				op of the fo	l otina
								pted, and $\rho$	
	dation SLS							A kN	
					,				
Gross wor	king pressu	ire, $q_w = F_{co}$	_{om,v} / (B _{com}	. L _{com} )			N/	A kPa	
Combine	d Footing l	Foundatio	n ULS Load	ding					
				1					
	al (downwa al (downwa				-			A KN	
						penueu), r	N//	A kN	
									1
									1
	1	1	1	1	I	1	1	1	1

CON		-	Cala dati	Charach		Job No	o. She	et No.		Rev.
	NSULTING I N E E R S	-	-	on Sheet		jХХ	x	4	18	
LIGI		j			1					
		<u> </u>				Member/Lo	ocation			
ob Title			-	technics Pa		Drg. Mada hu	Doto			dha
structure,	, Member De	esign - Geo	technics Pa	d, Strip and	d Raft	Made by	XX Date	21	/11/2021	una.
										_
Combine	d Footing l	Foundatio	n Reinforc	ement Des	sign					_
										_
Jross UL	S Pressure	2								
Frose LILS	nressure	a – (F	<b> </b>	)/(B				N/A	k Do	
	S pressure, o		ol,v,1,uls	ol,v,2,uls) / (D	com・∟com/			N/A	кра	
										_
	$\sim$				Shear force	e diagra	am			
					nding mom					
	4			De	nung mon		yrann			
		1	1	1		1				
Sagging	Bending M	oment De	sign in Pla	ne of Widt	th					
4oment a	it column ba	ase centrelii	ne, $M_x = q_w$	, _{ULS} . L _{com} .	$(B_{com}/2)^2/$	2		N/A	kNm	
	it column ba								kNm/m	
	moment cap				$1000.d_{x,s}^{2}$			N/A	kNm/m	
	tress, [M/bo							N/A	N/mm ²	
	tress ratio,							N/A		N/A
	$n, z_x = d_{x,s} .$								mm	
Area of te	nsion steel	required, A	$\frac{1}{M_x} = (M_x/L_c)$	_{om} ) / [(0.95	f _y ).z _x ]			N/A	mm²/m	
	nsile steel r								mm²/m	
Sagging b	ending mor	nent in plar	ne of width	utilisation =	= A _{s,x} / A _{s,pr}	rov,x,s		N/A		N/A
			<u> </u>							
	ent to conce					< ,	N/A	N/A		3.11.3.2
	ax(L _{com,1} , L _c									BS8110
	should the						cally refle	ected II	n the	-
ietailing c	consideratio	ns and as s	uch snoula	be specifica	ally reconsi	aerea;				
% Min car	g reinforcem	ont in plan	o of width (	(> - 0.0024)	1000 T	G250:	~-	N/A	0/	
	g reinforcem				.1000.1 _{com}	G250,	~-	N/A		N/A
				Julisation				N/A		N/A
Sagging	Bending M	oment De	sian in Pla	ne of Lenr	ath					
Jagging										
Moment a	it column ba	ase face. M.	. = 0	B _{aam} , [max	$(1_{arm 1} - h_1/2)$		-h ₂ /2	N/A	kNm	
	it column ba					-/ -com,2			kNm/m	
			, y/						,	1
Concrete i	moment cap	pacity per n	netre, Muy	= 0.156f _{cu} .1	1000.d _{v.s} ²			N/A	kNm/m	1
	tress, [M/bo				,,,,				N/mm ²	
	tress ratio,							N/A		N/A
_ever arm	$r_{y} = d_{y,s}$ .	[0.5 + (0.2	25-K _y /0.9) ⁰	^{.5} ] <= 0.95	d _{y,s}			N/A	mm	
Area of te	nsion steel	required, A	$s_{s,y} = (M_y/B_c)$	_{com} ) / [(0.95	$[f_y).z_y]$			N/A	mm²/m	
										1
	nsile steel r								mm²/m	
Sagging b	ending mor	nent in plar	ie of length	utilisation	$= A_{s,y} / A_{s,y}$	prov,y,s		N/A		N/A
	<u> </u>	<u> </u>	<u> </u>							<u> </u>
	ent to conce						N/A	N/A		3.11.3.
	_{om} /2>3/4mi						mm			BS8110
	should the						cally refle	ected ii	n the	
ietailing c	consideratio	ns and as s	ucn should	De specifica	ally reconsi	aered;				
		l ant in plan	o of longth		/ / 1000 T	6250		NI / A	0/	
Min an-	a reiniorcem	ient in plan			יי.⊥000.1 _{cor}	n GZOU	,	N/A		N/A
% Min sag		ant in place	o of longth	utilication						
	g reinforcem	nent in plan	e of length	utilisation				N/A		N/A

CON						Job No.	Sheet No.		Rev.
		Engineerin Consulting	-	on Sheet		jXXX	4	9	
ENGI		concurring	Linghieero	1	1			5	
	_					Member/Location			
		Member De	-			Drg.	Data <b>a</b> d		dha
Structure,	Member De	esign - Geot	technics Pa	d, Strip and	d Raft	Made by XX	^{Date} 21	/11/2021	una.
Hogging F	Bendina M	oment De	sign in Pla	ne of Len	ath				
Distance to	zero shea	r force fron	n column 1,	$L_{com,4} = (F)$	$F_{col,v,1,uls} - q_w$	ULS.B _{com} .L _{cor}	N/A	m	
		uls . L _{com,4} -						kNm	
Moment pe	er metre, M	y/B _{com}					N/A	kNm/m	
		pacity per m			1000.d _{y,h} ²			kNm/m	
		$[d^2]_y = (M_y/E)$						N/mm ²	
Bending st	ress ratio,	$K_{y} = [M/bd]$	$\frac{1}{y} / t_{cu} <=$	U.156	 .d		N/A	mm	N/A
Lever arm,	$z_y = a_{y,h}$	[0.5 + (0.2 required, A	$\frac{25 - K_y / 0.9}{= (M / P)}$	] <= 0.95	ou _{y,h} 5f) ⁊ 1			mm mm²/m	
			s,y — (11y/ D _C		y)y]			11111 / M	
Area of ter	nsile steel n	einforceme	nt provided	, As provide			N/A	mm²/m	1
		nent in plar			$= A_{s,v} / A_s$	prov,v.h	N/A	-	N/A
	-				5,, 5, 5,				
Requireme	nt to conce	entrate 2/3	rebar withi	n 1.5d _{y,h} fro	N/A	< N/A	N/A		3.11.3.2
		in(b ₁ or D ₁							BS8110
		above requi					reflected ir	n the	
detailing co	onsideratio	ns and as s	uch should	be specifica	ally reconsi	dered;			
		nent in plan			4.1000.T _{col}	_m G250; >=			
% Min hog	reinforcem	nent in plan	e of length	utilisation			N/A		N/A

CON						Job No.	Sheet No		Rev.
	ISULTING			on Sheet		jXXX		50	
21101						Member/Location			
	Characteria	Manahan Da		ta alemia a Da		Drg.			
Job Title		Member De				Made by XX	Date <b>1</b>	1/11/2021	bd
structure,	Member De	esign - Geo	lechnics Pa	u, Strip and		XX	Z.	L/11/2021 ^c	
Punching	Shear De	sign							
Tritical col	lumn 1 or 2	ie MAX(F	/(b.		$((h_2, h_2))$	or MAX(F	N/#		
	al (downwa							A kN	
	column base	-					-	Amm	
	column base							A mm	
	lumn base s					cular)		A mm ²	
	ffective dep							Amm	
	nsile steel r				y,377			A mm ² /m	
	nsile steel r							$mm^2/m$	
	rea of tensi							$\frac{1}{1}$ mm ² /m	
	s,prov,s/(100				5,00,5			A %	
$v_{\rm c} = (0.79)$	/1.25)(ρ _w f _{cι}	/25) ^{1/3} (400	)/d) ^{1/4} ; ρ _w <	3; f _{cu} <40;	(400/d) ^{1/4} >	>0.67		A N/mm ²	
Joiumn E	Base Face I	Perimeter							
Shear forc	ce at columr	h base face,	$V_1 = F_{col.v.}$	_{uls} - q _{w,ULS} .A	Å _{c1}		N//	A kN	
	hear force,							A kN	
	= 1.00 . V			t effects as	sumed ;		,.		
	ase face per				,		N//	A mm	
				Rectar	ngular	Circ	ular		
Internal co	lumn.			2.(b+h)	-	π.D		mm	
Edge colui			2b+	h or 2h+b		3/4( π.D)	,	mm	
Corner col			201	(b+h)		π.D/2			
	ess at colum	n haco faco	porimotor			Qf 0.5 8. 5M	N/A	MM N/mm ²	
	hear stress			, v ₁ — v _{eff,1}	/ u ₁ u (< 0		N//	-	N/A
									N/A
Eirct Sho	ar Perimet	or							
i ii st She									
Shoar forc	L ce 1.5d from	) a column ha	se face V.	– F	Λ		N//	A kN	
					ngular	Circ	ular		
Internal a			(6.1.7						
Internal co			•	3d).(h+3d)	-	$(D+3d)^{2}$	1	m ²	
Edge colui		.5d).(h+3d				d).(D+3d)		m ²	
Corner col		V 10		).(h+1.5d)	N/A	(D+1.5d) ²		m ²	
	shear force,			t offerste			N//	A kN	
	$v = 1.00 \cdot V$		no moment	t errects as	sumea;			_	
Column ba	ase first per	imeter, u ₂						A mm	
					ngular		ular		
Internal co			-	b+h)+12d		4D+12d	-	mm	
Edge colui		2	b+h+6d or	- 2h+b+6d	-	3D+6d		mm	
Corner col				(b+h)+3d		2D+3d		mm	
	ess at colum							N/mm ²	
Shear cap	bacity enhai	ncement by	^r calculating	$v_d$ at 1.50	d from "sup	oport" and c	comparing	against	
	ed v _c as cla								
comparing	g against en	hanced v _c	within 1.5d	of the "sup	pport" as ci	lause 3.7.7.	4 BS <mark>8110</mark>	;)	
	Case v ₂ <	V.					N/A		
		No links re	auired						
	Case $v_c <$	v ₂ < <b>1.6</b> v _c					N/A		
				u d					
			(n - n )	ua		+			
		$\Sigma A_{m} \sin \alpha$	$\geq \frac{(v-v_c)}{v_c}$		N/A	>=	N/A	mm I	
		$\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v-v_c)}{0.95f_y}$	v	N/A	>=	N/A	mm ²	
			$\geq \frac{(v - v_c)}{0.95 f_y}$	v 0.4 <i>ud/</i> 0.9		>=	N/A		

						Job No.	Sheet No.		Rev.
	ISULTING							· -	
ENGI	INEERS	Consulting	, Engineers			jXXX	⁵	51	
						Member/Location			
Job Title	Structure,	Member D	esign - Gec	technics Pa	d, Strip an	d Drg.	1		
	Member De		-			Made by XX	Date 21	/11/202	Chd.
,							-		
	+								
			-						
									-
									_
	Case 1.6v						N/A		_
		-	$\epsilon \geq \frac{5(0.7v)}{0.95}$	$-v_c$ ) $ud$					
		$\Sigma A_{sv} \sin \theta$	$l \ge$	5 <i>f</i>	N/A	>=	N/A	mm ²	
		Note $\Sigma A$	$s_{sv}sin\alpha >$	0.4ud/0.9	$5f_{yy}$ .				
	Case $v_2 >$	<b>2.0</b> v _c					N/A		
First shear	r perimeter	shear utilis	ation				N/A		N/A
Second S	hear Perin	neter	1						1
		-	1						1
Shear forc	ce 2.25d fro	m column	base face.	$V_3 = F_{colyouth}$	- q.,	-3	N/A	kN	1
					ngular		cular		1
Internal co	olumn		(h±1 50	1).(h+4.5d)	-	$(D+4.5d)^2$		m ²	
	т <b>bn</b> +2.25d).(	(b_1 5d) ~		, ,	-	.(D+4.5d)		m m ²	-
Corner col								m ²	+
				.(h+2.25d)	N/A	)+2.25d) ²			
	shear force,						N/A	KIN	
	$_{3} = 1.00 \cdot V$			it errects as	sumea;				
Column ba	ase second p	perimeter,	<u>u₃</u>					mm	
			<u> </u>		ngular		cular		
Internal co				(b+h)+18d		4D+18d		mm	
Edge colur	mn:	Ž	2b+h+9d o	r 2h+b+9d	N/A	3D+9d	N/A	mm	
Corner col				b+h)+4.5d		2D+4.5d	N/A	mm	1
Shear stre	ess at colum	n base sec						N/mm ²	
	Case $v_3 <$	ν _c					N/A		1
		No links re	equired.				-		
	Case $v_c <$						N/A		
	+	$\Sigma A = \sin \alpha$	$c \ge \frac{(v - v_c)}{0.95f_c}$	ud	N/A	>=	N/A	mm ²	
		211 _{sv} onto	$-$ 0.95 $f_{\rm c}$	yv		~ _		111111	
		Noto 54	aina	0.4 <i>ud</i> /0.9	s.€				
	Case 1.6v			0.400.9	Jyv.		NI / A		+
	Case 1.0V			<u> </u>			N/A		+
		<b>V</b> 4 ·	5(0.70	$-v_{e}$ )ud				2	
		$LA_{sv}sin0$	$\epsilon \geq \frac{5(0.7v)}{0.95}$	$5f_{yy}$	N/A	>=	N/A	mm ²	
				-					
	<u> </u>		$s_{sv}sin\alpha >$	0.4 <i>ud</i> /0.9	$5f_{yv}$ .				
	Case $v_3 >$	2.0ν _c	<u> </u>				N/A		
Second sh	near perimet	er shear u	tilisation				N/A		N/A
Note a neo	gative shear	$r$ stress $v_2$	and/or $v_3$	on a corre	ctly specifi	ed column (	wrt interna	l, edge or	corner)
	that the she	ar perimet	er is beyon	d the physic	cal extreme	es of the fou	Indation an	d as such	punching
	iro ic net e	itical;							
indicates t	ii e is not ch								
indicates t				+	1	1	1		1
indicates t									_
indicates t									
indicates t									
indicates t									
indicates t									
indicates t									

CON	ISULTING	Engineerin	a Calculatio	n Chaot		Job No.	Sheet No.	Rev.
	ISULTING	-	-	m sheet		jXXX	5	2
			5			Member/Location	_	
- la Titl -	Chrusting	Mambar	alan Caal	tachnica Da	d Ctuin and			
ob Title		Member De	-		· · · ·		Date 21	(11 / 2021(thd
tructure,	Member De	esign - Geo	lechnics Pa	u, Strip and		Made by XX	21	/11/2021 ^{Chd.}
boar Do	sign for B	anding in I	lano of W	lidth				
	sign for Be							
hear forc	e at colum	hase cent	reline V	- a	B /	2	N/A	
	e at column					<u>د</u>		kN/m
	e at 1.0d _{x,s}			1		(B /		
	$e at 1.0d_{x,s}$							kN/m
	above shear					-com		
ltimate s	hear stress	for bending	in nlane o	fwidth v.	=(\//l	)/(1000 c	N/A	N/mm ²
	hear stress						N/A	N/
esian she	ear stress fo	or bending	in plane of	width. va=	=(V_/L)/(	(1000.d)	N/A	N/mm ²
	pacity enha							
	ed v _c as cla							
	against en							,
	nsile steel r							mm²/m
	s,prov,x,s/(10			/ · ·s,prov,x,s			N/A	
= (0.7)	'9/1.25)(ρ _w f	$(25)^{1/3}$	0/d ) ^{1/4}		L0· (400/d	) ^{1/4} >0.67		N/mm ²
,x = (0.7	<u>9/1.29/(Pwi</u>	<u>cu</u> /23) (40	, () () () () () () () () () () () () () (	_w ~, _{cu} ~¬	, (+00/u _x	,s) >0.07	N/A	
heck v.	 _x < v _{c,x} for	no links					N/A	
	-	hear capac	ity y (100	)0 d )			_	kN/m
				Jo.u _{x,s} )			N/A	
heck v	< v. < (	 )4 ± v fa	or nominal	l links			N/A	
	<b>x &lt; v_{d,x} &lt; 0</b> Provide no	minal links	such that /		 // (1000)/((	) 95f ) i o		mm²/mm/m
						$(1000.d_{x,s})$		kN/m
					0.+ + v _{c,x} ).	(1000.u _{x,s} )	N/A	KIN/III
heck v .	 _x > 0.4 + \	, for des	ian links				N/A	
				0 (y - y)	//// 95f ) i	.e. A _{sv} / S >	-	 mm²/mm/m
						$(0.95f_{yv}).d_x$		kN/m
					sv,prov,x/ O _x /.	(0.551 ₉₀ ).u _x	N/A	KIN/III
roa provi	ided by all I	inks nor me	tro A				NI/A	mm²/m
	_{rov,x} / S _x val		Suc, A _{sv,prov}	,x				mm ² /mm/m
/1	ear resistan		ling in pland	of width u	Itilication		N/A	<u>nim / nin/ m</u> N/
esign she							N/A	N/:
		i de la companya de l	1			1		

					Job No.	Sheet No.		Rev.
CONSULTING E N G I N E E R S	Engineerin	g Calculatio	on Sheet		jXXX		3	
	Consulting	Engineers	Γ	Γ		5	5	
					Member/Location			
Job Title Structure, Structure, Member D	, Member De	-		u, Strip un	Drg. Made by	Date <b>31</b>	/11/2021	thd
	esign - Geo		u, Suip and		XX	21	/11/2021	
Shear Design for B	ending in I	Plane of Le	ength					
Shear force at colum	n 1 base lef	t face, V _{y,1}	$= q_{w,ULS} \cdot B$	. (L _{com,1}	h ₁ /2)	N/A		
Shear force at colum Shear force at colum	n 1 base rig	int race, v _{y,}	$\frac{2}{2} = F_{col,v,1,ul}$	$s - q_{w,ULS}$	B _{com} . (L _{com,}	N/A N/A		
Shear force at colum	n 2 base rig	ht face. $V_{y,3}$	$\frac{-1}{col,v,2,uls}$	$- q_{w,0LS} \cdot D_{c}$		N/A N/A		
Shear force at critica	l column ba	se face, V _v ,	$\frac{4}{\text{ult}} = MAX(V)$	$V_{v,1}, V_{v,2}, V_v$	.3, V _{v,4} )	N/A		
Shear force at critica							kN/m	
Shear force at 1.0d _{y,}								
Shear force at 1.0d _{y,}					/B _{com}	N/A	kN/m	
Note the above shea	r forces are	for bending	in plane o	f length;				
Iltimato choor stress	for bonding	in plana a	flongth y	_()/ /5			N/mm ²	
Jltimate shear stress Jltimate shear stress					o _{com} )/(1000	N/A N/A	iv/inm ⁻	N/A
						N/ A		
Design shear stress i	n plane of le	ength, v _{d,v} =	(V _v /B _{com} )/(	1000.d _{v,s} )		N/A	N/mm ²	
Shear capacity enha					t" and com			
inenhanced v _c as cl							oport" and	
comparing against er				ort" as clau	ıse 3.4.5.8		2	
Area of tensile steel		nt provided	, A _{s,prov,y,s}				mm ² /m	
$p_{w} = 100A_{s,prov,y,s}/(10)$ $v_{c,y} = (0.79/1.25)(\rho_{w})$		$10/d^{1/4}$	3 · f - 1	0. (400/d	) ^{1/4} >0.67	N/A	% N/mm ²	
$r_{c,y} = (0.79/1.25)(p_w)$	¹ cu/23) (40	joyu _{y,s} ) , j	_w ~, _{cu} ~4	0, (400/u _y	,s) >0.07	N/A	11/11111	
Check v _{d,y} < v _{c,y} for	r no links					N/A		
	shear capac	ity v _{c,y} .(100	)0.d _{y,s} )				kN/m	
Check $v_{c,y} < v_{d,y} < 0$						N/A	2	
	ominal links		-		/		mm ² /mm/	m I
Concrete	and nomina			0.4 + v _{c,y} ).	(1000.0 _{y,s} )	N/A	kN/m	
Check v _{d,y} > 0.4 +	v for des	ian links				N/A		
	near links A _s		0.(v _{d.v} -v _{c.v} )	/(0.95f _{vv} ) i	.e. A _{sv} / S :	-	mm²/mm/	m
	and design						kN/m	
Area provided by all		etre, A _{sv,prov}	,у				mm ² /m	
Tried A _{sv,prov,y} / S _y va			<u> </u>				mm²/mm/	
Design shear resistai	nce for benc	ling in plane	e of length	utilisation		N/A		N/A

1 1 N	SULTING	Engineerin	a Calculatio	on Shoot		Job No.	Sheet No.		Rev.
	INEERS			on Sneet		jXXX	5	54	
						Member/Location	n		
ob Title	Structure.	Member De	esian - Geo	technics Pa	d. Strip and	Drg.			
	Member De		-			Made by XX	Date 21	/11/202	1 ^{Chd.}
,									
etailing	Requirem	ents							
ll dotailir	ng requirem	ents met ?					N/A		
lax saggi	ng steel rei	nforcement	pitch in pla	ane of width	ו (<3d _{x,s} , <	750mm)	N/A	mm	N/A
	ng steel rei							mm	N/A
lax hoggi	ing steel rei	nforcement	pitch in pla	ane of lengt	th (<3d _{y,h} ,	<750mm)	N/A	mm	N/A
M-		0.50	/ A -t 1	200					
Ma	ximum spaci		% Ast or less ween 0.5% ε	s - 300mm and 1.0% - 2	25mm				
				ater - 175mr					
		1							
ax saggi	ng steel rei	nforcement	pitch in pla	ane of width	<u>י</u>		N/A	mm	N/A
	ng steel rei						-	mm	N/A
lax hoggi	ing steel rei	nforcement	pitch in pla	ane of leng	th		N/A	mm	N/A
in one-'		forcoment	nitch in -l-	no of width	(>100		B1/5		
	ng steel rein ng steel rein				-		-	mm mm	N/A N/A
	ng steel reir		· · · ·	-	-	,.		mm	N/A
	llowance ha			_		,.			
				, 	,		, 		
				idth (<= 0.	-		N/A	%	N/A
6 Max sa	gging reinfo	orcement in	plane of le	ngth (<= 0	.04.1000.T	com)	N/A	%	N/A N/A
6 Max sa		orcement in	plane of le	ngth (<= 0	.04.1000.T	com)		%	
6 Max sa 6 Max ho	gging reinfo gging reinfo	prcement in prcement in	plane of le plane of le	ngth (<= 0 ength (<= 0	0.04.1000.T 0.04.1000.T	com)	N/A N/A	% %	N/A N/A
6 Max sa 6 Max ho agging s	gging reinfo gging reinfo teel reinforo	prcement in prcement in cement dian	plane of le plane of le neter in pla	ngth (<= 0 ngth (<= 0 ne of width	0.04.1000.T 0.04.1000.T 0.04.1000.T	com) com) 5mm)	N/A N/A N/A	% % mm	N/A N/A N/A
6 Max sa 6 Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
6 Max sa 6 Max ho agging s agging s	gging reinfo gging reinfo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm	N/A N/A N/A
Max sa Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
6 Max sa 6 Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
6 Max sa 6 Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
6 Max sa 6 Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
6 Max sa 6 Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
Max sa Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
6 Max sa 6 Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
Max sa Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
Max sa Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
Max sa Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
Max sa Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
Max sa Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
Max sa Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
Max sa Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
Max sa Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
Max sa Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
Max sa Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
6 Max sa 6 Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
6 Max sa 6 Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
Max sa Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A
Max sa Max ho agging s agging s	gging reinfo gging reinfo del reinforo teel reinforo	prcement in prcement in cement dian cement dian	plane of le plane of le neter in pla neter in pla	ngth (<= 0 ngth (<= 0 ne of width ne of lengt	0.04.1000.T 0.04.1000.T $h, \phi_{sx} (>=16$ $h, \phi_{sy} (>=1$	com) com) 5mm) 6mm)	N/A N/A N/A N/A	% % mm mm	N/A N/A N/A N/A

CON		E a si a sa i a		. Charak		Job No.	Sheet No.		Rev.
ENGI	N E E R S	Consulting	g Calculatio Engineers	n Sneet		jXXX	5	55	
			-			Member/Location			
Job Title	Structure.	Member De	esign - Geot	echnics Pa	d. Strip and				
			technics Pa			Made by XX	Date <b>21</b>	/11/2021	hd.
Standard	Combined	Footing F	oundation	Reinforce	ement Det	ails			
	As nor star	ndard multi	column foc	ting reinfo	rcement de	taile:			
	AS PEI Stai			ing renno					

CON	SULTING	Engineerin	a Calculatio	on Sheet		Job No. Sheet No.			Rev.
ENGI	NEERS	Consulting	Engineers	in Sheet		jXXX	5	6	
						Member/Location			
	Ctructure	Momber Dr		tochnice D-					
Job Title	Member De	Member De	tochnics Pa	d Strip and	u, Strip and I Poft	Made by XX	Date <b>71</b>	/11/2021	thd.
Structure,		esigii - Geol	lechnics Pa	u, suip and	ΙΚάιι	<b>XX</b>	21	/11/2021	
			<u> </u>		<u> </u>				


CONS	ULTING	Engineering	n Calculatio	n Shoot		Job N	lo.	Sheet No		Rev.
		Consulting		in Sheet		jХХ	xx		57	
		J	5			_			0.	
						Member/	Location			
		Member De				Dig. Made by		Doto		hd
Structure, M	lember De	esign - Geot	echnics Pa	d, Strip and	i Raft	IVIAUE Dy	XX	^{Dale} 2	L/11/2021 ⁰	nu.
		datian Din								
Strap Footi	_			aluman is to	a alaga ta l	the eit	a hav	ndom to		
Note that the	•	-								
the employn restrains the			-	-						
differs from										
is even more				παι της μιο	χππιζή ΟΓ ΕΓ				e boundary	
		-7								
Width and le	enath of in	ner footina	Batran a					2.00	0 m	
Length of ou			/ - suap,2					1.70		
Length inter		17						3.00		
Centroid, y _c			$(1 + F_{col + 2})$						A m	
Width of out	er footing	$B_{\text{strap 1}} = ($	$(B_{\text{strap }2}, L_{\text{strap }2})$	an-Vc.Bstran 2	$^{2})/(y_{c}L_{stran})$	1-Lstra	n 1.(L		A m	
Note the stra										
Should the r				-				-		
	L _{strap,1}	, , ,	,,		$\frown$		$\overline{\frown}$	, í	Inner foo	tina to
	<b>4</b>	→			$\prec$ '			5-0	be desig	
T T					B _{strap,2}			M	Y a conv	entional
	1.					Ĺ	<b></b>	$\mathcal{Y}$	pad footi	ng;
		→ Y	:							
B _{strap,1}							B _{str}	ap,2		
	Column	1	L _{strap}		Column	12	L,	Γ		
				$\sim$	L	<u> </u>				
•					$\leq$	$\square$				
Note the sub		-		-		-			-	
designed col			footing wit	th the loads	s F _{col,v,2} an	d dime	ensior	ns B _{strap,2,}	t _{1,strap} and	
t _{2,strap} define										
Thickness be		/						0.80		
Thickness of					er 0.000m	)		0.00		
Thickness of									4 m	
Column base						I	Rectan			
Column base			_	.,	ge for Span in				_	
Column 1 ba						Edge	•		0 mm	
Column 1 ba				-					0 mm	
Note where										
<i>base is alwa</i> Depth of bea		r anu iocale	a in the ce	ntre or the	strap tootii	Ig Б _{st}	rap,1 /			
Width of bea								0.80 0.30	_	
Note that the		am muct n	ot bear on	the coil co	mpressible	void f	formo			
Note that the	e suap be	ann must n	ot bear on		inpi essible	voiu i	Unne		ecineu,	
Strap Footi	ing Found	dation Rei	nforcemer	<b>\</b>						
_	ing i can		norecinci							
┝──┦┛─────			<b> </b>			ł		jing in len		
┝──┸┻╺╸╸		H					Sago	ing in wic	<u>th</u>	
Sagging stee	el reinforc	ement dian	neter in wid	lth of outer	footing, $\phi_{s}$	x		20	mm	
Sagging stee					= : : : :		g, p _{sx}	20	0 mm	
Sagging stee									Amm ² /m	
Hogging stee								16		
Hogging stee				,					5	
Hogging stee	el area pr	ovided in be	eam, A _{s,prov}	_{,y,h} = n _{hy} .π.	$\phi_{hy}^2/4$			N//	A mm ²	
			;							

						Job No.	Sheet No.		Rev.
	SULTING			on Sheet				-0	
ENGI	NEERS	Consulting	Engineers			jXXX	5	58	
						Member/Location			
Job Title	-		-	technics Pa		O ^{Drg.}	1		1
Structure,	Member De	esign - Geo	technics Pa	d, Strip and	d Raft	Made by XX	Date 21	/11/2021	hd.
Chara Ilada	dia ang sha a ƙ	Circle allow		- (					
	diameter fo		-			,2	None	mm	
	f link legs fo		•		2 1	~ ^ -	30		
	ded by all l diameter fo						None 🗸	mm ²	
	f link legs fo					1-	30	mm	
			-			ting, A _{sv,prov}		mm ²	
	diameter fo							mm	
	link legs p							/m	
						footing, A _{sv}		mm²/m	
	ks for bend					31 31		mm	
	diameter ir						12 🔻	mm	
Number of	links in a d	cross sectio	n in beam,				2		
						.\phillink,y ² /4.n _{lir}	N/A	mm²	
Pitch of lin	ks in beam	, S _y					150	mm	
						strap - cover	N/A	mm	
Effective d	epth to hog	ging steel	in beam, d _y	$h_{r,h} = h_{beam} -$	$cover_1 - \phi_l$	_{ink,y} - _{\$hy} /2	N/A	mm	
	steel reinfo							kg/m ³	
[ 7.850 . (	(A _{s,prov,x,s} ) /	'T _{strap} + 78	850 . (A _{s,pro}	_{ov,y,h} ) / b _{bea}	h _{beam} ];	No curtailm	ent; No lap	os; Links igi	nored; Dist
Strap Foo	ting Foun	dation SLS	5 Loading						
CI C vortio		rd) load fro	m column	1 and baca	alah (if aug	spended), F	650	Lani	
						spended), F			N/A
	•				•	ng, F _{under,stra}			N/A
	soil (above						N/A N/A		
						otings whe		-	l
			-			ed soil dens			-
						ng, F _{under.stra}			. / 301/
	soil (above				-		N/A		
				· · ·		otings whe	-		ting
is below gi	round level	and backfil	lled, for con	servatism t	the saturate	ed soil dens	sity is adop	ted, and $\rho_{o}$	≈γ _{sat} ;
Strap bear	n weight, F	beam,strap =	b _{beam} .h _{beam} .	ρ _c .L _{strap}			N/A	kN	
	dation SLS					17.7	N/A		
Note F _{strap}				. _{strap} /2 + (F	under,strap,1	+F _{above} ,soil,1	).(L _{strap} +h,	/2-L _{strap,1} /2	2)]
		_{strap} +h/2-L s	17						
						the inner fo			the
						tion beneat			
	dation SLS						N/A		N/A
Note F _{strap}	$_{,v,2} = F_{col,v,}$	$_1 + F_{col,v,2}$	+ r beam,strap	p + + _{under,st}	rap,1 + F abo	$F_{ve,soil,1} + F_{u}$	Inder,strap,2 +	- F _{above,soil,2}	- r _{strap,v,1} ,
		1.1.2				; F _{strap,v,2} v		LIIdII F _{col,v,2}	, 
THIS IS ESS	enually the	sis reaction	i beneath t	ne inner för	oung and n	nust not be	negative;		
Gross worl	kina nressu	re under o	l Iter footing	. 0	/(R	ap,1 . L _{strap,1} )	N/A	kPa	
	king pressu						N/A		
5,035 WUI				/ Чw,2 — I stra	ap,v,2 / Ustrap	0,2 		Ki u	
Strap Foo	ting Foun	dation UI 9	S Loading						
ULS vertic	al (downwa	rd) load fro	m column	1 and base	slab (if sus	spended), F	N/A	kN	
						spended), F			
	-	-							

CON	SULTING	Engineerin	n Calculatio	on Sheet		Job No.	Sheet No.		Rev.
		Consulting				jXXX	5	9	
						Member/Location			
Job Title	Structure	Member De	sian - Geol	technics Pa	d Strin and				
		esign - Geol				Made by XX	Date 21	/11/2021	hd.
							/	/	
Strap Foo	ting Foun	dation Rei	nforcemer	nt Design					
Gross UL	S Pressure								
		vertical (do					N/A	kN	
		col,v,1,uls .L stra							
		_{ap,v,1,uls} is ca							r the
		outer footin							
GIUSS ULS	pressure u	nder outer	rooung, q _{w,}	ULS,1 — 「stra	o,v,1,uls / (D _S	trap,1 • ∟strap,	N/A	кра	
Total foun	dation ULS	vertical (do	wnward) lo	ad of inner	footing F		N/A	٧N	
		$F_{ol,v,1,uls} + F_{cl}$				1111			
		_{ap,v,2,uls} is ca					will be l	ess than F	rol.v.2.uls
		uls reaction							,,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		nder inner				-	N/A	kPa	
F _{col} ,	_{v,1,uls} .r-q _{w,UL}	. _{S,1} .B _{strap,1} .(1	+h/2) ² /2	(F _{col,v,2,uls} -	F _{strap,v,2,uls} ).	B _{strap,2} /2	F	R	B /2
					1			w,ULS,2.B _{strap} ,	2·D _{strap,2} /2
						Shear fo	orce diagra	m	
		V I	F _{strap,v,1,uls} -	Factor 1 min		Bending m	oment diag	Iram	
ibutia E				· col,v,1,uis		ULS,2.B _{strap,2} .	$B_{atrop 2}/2$		
ibutid F _{col}	,v,1,uls ⁻ 9w,ULS	,1.B _{strap,1} .h/:	<u>د</u>		<u> </u>	ULS,2° — strap,2°	- strap,2/ -		
Sagaing	Ronding M	oment Des	tian in Pla	ne of Widt	h of Oute	r Eootina			
Sagging						litooting			
Moment a	column ba	se face, M _x	$= 0_{w \parallel s 1}$	Letran 1 . [(E	Betran 1-(b or	r D))/21 ² / 2	N/A	kNm	
Moment a	column ba	se face per	metre, M _x /	L _{strap,1}		_ /// _ ] // _	N/A	kNm/m	
Concrete r	noment cap	bacity per m	etre, M _{u,x} =	= 0.156f _{cu} .1	.000.d _{x,s} ²		N/A	kNm/m	
Bending st	ress, [M/bo	$d^2]_x = (M_x/L)$	_{strap,1} ) / [(1	000).d _{x,s} ² ]			N/A	N/mm ²	
		$K_x = [M/bd^2]$					N/A		N/A
Lever arm	$, z_{x} = d_{x,s}$ .	[0.5 + (0.2)]	.5-K _x /0.9) ^{0.}	⁵ ] <= 0.95	d _{x,s}			mm	
Area of te	nsion steel	required, A _s	$_{\rm s,x} = (M_{\rm x}/L_{\rm st})$	_{rap,1} ) / [(0.9	95f _y ).z _x ]		N/A	mm²/m	
A				•				2,	
		einforceme		11 11	ting utilica	tion - A		mm²/m	
Sayying D		nent in plan			ung utilisa	$aon = A_{s,x}$	N/A		N/A
Requireme	ent to conce	entrate 2/3	rebar withii	n 1.5d. fre	N/A	< N/A	N/A		3.11.3.2
		D)/2)>3/4(I		,		_ N/A mm			BS8110
		above requi					reflected ir	the	
		ns and as s							
-		ient in plane					,	%	
% Min sag	reinforcem	ent in plan	e of width o	of outer foo	ting utilisat	ion	N/A		N/A

CON	SUI TINC	Enginoorin	a Calculatio	n Shoot		Job No.	Sheet No.		Rev.
	SULTING N E E R S			Sheet		jXXX	6	50	
						Member/Location			
ob Title	Structure	Member De	sian - Geo	technics Pa	d Strin and				
	Member De					Made by XX	Date 21	/11/2021	¢hd.
li uccui c,							<u> </u>	/ 11/ 2021	
logging	Bending M	oment De	sign in Be	am					
						.B _{strap,1} ) - h/			
loment, M	$I_y = F_{col,v,1,u}$	_{ils} . r - q _{w,UL}	_{S,1} . B _{strap,1}	. (r+h/2)² ,	/ 2		N/A	kNm	
Concrete r	noment cap	acity, M	= 0.156f	bhaam.du h ²			N/A	kNm	
ending st	ress, [M/bc	$[^{2}]_{v} = M_{v} / [$	$[b_{\text{beam}}, d_{\text{v},\text{h}}^2]$					N/mm ²	
	ress ratio,						N/A		N/A
ever arm	$, z_{y} = d_{y,h}$ .	[0.5 + (0.2)]	25-K _v /0.9) ⁰	^{.5} ] <= 0.95	d _{v,h}		N/A	mm	
rea of ter	nsion steel i	required, A	$_{5,y} = M_y / [($	[0.95f _y ).z _y ]			N/A	mm ²	
rea of to	nsile steel r	ainforcomo	nt provided	Δ.			NI / A	$mm^2/m$	
	ending mon						N/A N/A	mm²/m	N/A
					_{beam} G250;	>= 0.0013			
% Min hog	reinforcem	nent in bear	n utilisatior	<b>ו</b>			N/A		N/A
									-
			-						
									1
									1
									1
									1

	SUI TINC	Engineerin	a Calculatio	n Chaot		Job No.	Sheet No.		Rev.
ĿŊĠĬ		Consulting		JII Sheet		jXXX		61	
						Member/Location			
ob Title	Structure	Member De	esian - Geol	technics Pa	d. Strip and	Drg.			
		esign - Geo	-			Made by XX	Date 21	/11/2021	Chd.
in acture,		Joigh Geo						./ 11/ 2021	•
									-
Punching	Shear Des	sign							
						ended), F _{col}		kN	
		section, $A_{c1}$			r πD²/4 (cir	cular)		A mm ²	
-	-	oth of rebar	•	1-				A mm	
		einforceme		11 1 1				A mm²/m	
		le steel rein	forcement	provided, A	s,prov,s			A mm²/m	
$b_{w} = 100A$	s,prov,s/(1000	0.d)						A %	
$v_{\rm c} = (0.79)$	/1.25)(ρ _w f _{cu}	^{1/3} (400	$(0/d)^{1/4}; \rho_w < 0$	3; f _{cu} <40;	(400/d) ^{1/4} >	>0.67	N/A	N/mm ²	
Column B	ase Face F	<u>Perimeter</u>							
Shear forc	e at columr	h base face,	. V1 = F	1	1.A _{c1}		N//	A KN	
-ffective c	hear force	$V_{\text{eff},1} = 1.0$	$\frac{1}{0} \cdot \frac{1}{V}$	1,uis <b>Y</b> w,ULS	,1"' 'Cl			A KN	1
		$v_{eff,1} - 1.0$ $r_1$ because		t effects an	sumed		IN/ <i>F</i>		
	se face per						NI / /	\ mm	1
				Posta	ngular	Circ	ular N/F	A mm	
Internal -					-				1
Internal co			26.1	2.(b+h)		$\pi.D$		mm	
Edge colur			20+	h or $2h+b$	-	3/4( π.D)		mm	
Corner col				(b+h)		$\pi.D/2$	N/A	mm	
			e perimeter	$v_1 = V_{eff,1}$	/ u ₁ d (< 0	.8f _{cu} ^{0.5} & 5N	N/A	N/mm ²	
Jltimate sl	hear stress	utilisation					N/A		N/A
First Shea	ar Perimet	er:							
Shear forc	e 1.5d from	n column ba	ase face, $V_2$	$F = F_{col,v,1,uls}$	- q _{w,ULS,1} .A	A _{c2}	N/A	A kN	
				Recta	ngular	Circ	ular		
Internal co	olumn:		(b+3	8d).(h+3d)	N/A	(D+3d) ²	N/A	m ²	
Edge colur	mn: (b+1	.5d).(h+3d	) or (h+1.5	5d).(b+3d)	N/A	d).(D+3d)	N/A	m ²	
Corner col	umn:		(b+1.5d)	).(h+1.5d)	N/A	(D+1.5d) ²	N/A	m ²	
Effective s	hear force,	$V_{eff,2} = 1.0$	0.V ₂				N/A	A kN	
Vote V _{eff,2}	= 1.00 . V	2 because	no moment	t effects as	sumed;				
	ase first per						N/A	A mm	1
				Recta	ngular	Circ	ular ,		
Internal co	lumn:	1	2.(	b+h)+12d	-	4D+12d	1	mm	1
Edge colum		2	2b+h+6d or	,	-	3D+6d	-	mm	1
Corner col		-		(b+h)+3d		2D+3d		mm	1
		n base first		· /	,	00		N/mm ²	1
						port" and c			
						calculating			
Inenhance						lause 3.7.7.			1
						1	NI/A		ļ
	Case v ₂ <						N/A		
	Case v ₂ <	No links re							
	Case v ₂ <						N/A N/A		
	Case v ₂ <	No links re $v_2 < 1.6v_c$		ud	N1/A		N/A	2	
	Case v ₂ <	No links re $v_2 < 1.6v_c$		ud v	N/A	>=		mm ²	
	Case v ₂ <	No links re $v_2 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$		ud v 0.4ud/0.9		>=	N/A	mm ²	
	Case v ₂ <	No links re $v_2 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v - v_c)n}{0.95f_y}$			>=	N/A	mm ²	
	Case v ₂ <	No links re $v_2 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v - v_c)n}{0.95f_y}$			>=	N/A	mm ²	
	Case v ₂ <	No links re $v_2 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v - v_c)n}{0.95f_y}$			>=	N/A	mm ²	

						Job No.	Sheet No.		Rev.
	SULTING			on Sheet				_	
ENGI	NEERS	Consulting	Engineers			jXXX	6	2	
						Member/Location			
Job Title	Structure,	Member De	esign - Geo	technics Pa	d, Strip ar	10 ^{Drg.}			
Structure,	Member De	esign - Geo	technics Pa	d, Strip and	d Raft	Made by XX	Date <b>21</b>	/11/2021	Chd.
	Case 1.6v	$v_{\rm c} < v_2 < 2.$	0ν.				N/A		
							,		
		$\Sigma A = \sin \alpha$	$\geq \frac{5(0.7v-10.9v)}{0.95}$	$-v_{e})ud$	N/A	>=	N/A	mm ²	
		=-sv-	0.95	5f _{yv}	,,,				
		Note ΣA	_{sv} sinα >	0.4ud/0.9	5f				
	Case $v_2 >$		sv5mor /	0.400.5	0/ _{yv} .		N/A		
		2.0v _c					N/A		
First share	r perimeter	shoar utilia	ation				N/A		
inst snear	r perimeter						N/A		N/A
Socard C	hoor Berlin								
Second S	hear Perin	песег							
Choor for-		m column ¹	l			^	N1 / A	LAI	
Shear forc	ce 2.25d fro	m column t	Jase lace, V				N/A	KIN	
<del>.</del>	ļ		<u> </u>		ngular		ular	2	
Internal co			,	).(h+4.5d)		$(D+4.5d)^2$		m ²	
	́т <b>bn+</b> 2.25d).(					.(D+4.5d)		m ²	
Corner col			(b+2.25d).	(h+2.25d)	N/A	)+2.25d) ²		m²	_
	shear force,						N/A	kN	
Note V _{eff,3}	$_{\rm s} = 1.00 \; . \; V$	′ ₃ because	no momen	t effects as	sumed;				
Column ba	ase second	perimeter,	U ₃					mm	
					ngular	Circ	ular		1
Internal co	olumn:			b+h)+18d		4D+18d		mm	
Edge colur	mn:	2	b+h+9d or	- 2h+b+9d	N/A	3D+9d	N/A	mm	
Corner col				0+h)+4.5d		2D+4.5d	N/A	mm	
Shear stre	es at colum	in base sec	ond perime	ter, $v_3 = V_e$	_{eff,3} / u ₃ d		N/A	N/mm ²	
			[ ·		L				
	Case $v_3 <$	ν _c					N/A		
		ν _c No links re	quired.				N/A		
	Case v ₃ <	-					N/A N/A		
	Case v ₃ <	No links re v ₃ < <b>1.6</b> v _c	•						
	Case v ₃ <	No links re v ₃ < <b>1.6</b> v _c	•	ud	 	>=	N/A	mm ²	
	Case v ₃ <	No links re v ₃ < <b>1.6</b> v _c		ud v	N/A	>=		mm ²	
	Case v ₃ <	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v - v_c)}{0.95 f_y}$	-		>=	N/A	mm ²	
	Case v ₃ < Case v _c <	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A$	$\geq \frac{(v - v_c)}{0.95f_y}$ sysin $\alpha > $	-		>=	N/A N/A	mm ²	
	Case v ₃ < Case v _c <	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_c < v_3 < 2$ .	$\geq \frac{(v - v_c)}{0.95 f_y}$ sysina > $0v_c$	0.4 <i>ud</i> /0.9		>=	N/A	mm ²	
	Case v ₃ < Case v _c <	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_c < v_3 < 2$ .	$\geq \frac{(v - v_c)}{0.95 f_y}$ sysina > $0v_c$	0.4 <i>ud</i> /0.9	5f _{yv} .		N/A N/A N/A		
	Case v ₃ < Case v _c <	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_c < v_3 < 2$ .	$\geq \frac{(v - v_c)}{0.95f_y}$ sysin $\alpha > $	0.4 <i>ud</i> /0.9		>=	N/A N/A	mm ²	
	Case v ₃ < Case v _c <	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} < 2.$ $\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v - v_{c})}{0.95 f_{y}}$ sv sin $\alpha > 0v_{c}$ $\geq \frac{5(0.7v - 0.95)}{0.95}$	0.4 <i>ud</i> /0.9	5f _{yv} . N/A		N/A N/A N/A		
	Case v ₃ < Case v _c < Case 1.6v	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v - v_c)}{0.95 f_y}$ sysina > $0v_c$	0.4 <i>ud</i> /0.9	5f _{yv} . N/A		N/A N/A N/A N/A		
	Case v ₃ < Case v _c <	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v - v_{c})}{0.95 f_{y}}$ sv sin $\alpha > 0v_{c}$ $\geq \frac{5(0.7v - 0.95)}{0.95}$	0.4 <i>ud</i> /0.9	5f _{yv} . N/A		N/A N/A N/A		
	Case v ₃ < Case v _c < Case 1.6v Case v ₃ >	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{c} < v_3 < 2$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v - v_c)\pi}{0.95 f_y}$ sysina > $0v_c$ $\geq \frac{5(0.7v - 0.95)}{0.95}$ sysina >	0.4 <i>ud</i> /0.9	5f _{yv} . N/A		N/A N/A N/A N/A		
	Case v ₃ < Case v _c < Case 1.6v	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{c} < v_3 < 2$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v - v_c)\pi}{0.95 f_y}$ sysina > $0v_c$ $\geq \frac{5(0.7v - 0.95)}{0.95}$ sysina >	0.4 <i>ud</i> /0.9	5f _{yv} . N/A		N/A N/A N/A N/A		N/A
Second sh	Case v ₃ < Case v _c < Case 1.6v Case v ₃ >	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin\alpha$ Note $\Sigma A_{c} < v_3 < 2$ . $\Sigma A_{sv} \sin\alpha$ Note $\Sigma A_{sv} \sin\alpha$ Note $\Sigma A_{sv} \sin\alpha$ Let shear ut	$\geq \frac{(v - v_c)}{0.95 f_y}$ svsin $\alpha > \frac{0 v_c}{0.95}$ $\geq \frac{5(0.7 v - 0.95)}{0.95}$ svsin $\alpha > \frac{1}{100}$ illisation	0.4 <i>ud</i> /0.9 - <i>v</i> _c ) <i>ud</i> - <i>f</i> _{yv} 0.4 <i>ud</i> /0.9	5f _{yv} . N/A 5f _{yv} .	>=	N/A N/A N/A N/A N/A	mm ²	
Second sh Note a neg	Case $v_3 <$ Case $v_c <$ Case 1.6v Case 1.6v Case $v_3 >$	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin\alpha$ Note $\Sigma A_{c} < v_3 < 2$ $\Sigma A_{sv} \sin\alpha$ Note $\Sigma A_{sv} \sin\alpha$ Rec $\tau shear ut$ $\tau stress v_2$	$\geq \frac{(v - v_c)}{0.95 f_y}$ svsin $\alpha > 0v_c$ $\geq \frac{5(0.7v - 0.95)}{0.95}$ svsin $\alpha > 0$ illisation and/or $v_3$	0.4 <i>ud</i> /0.9 - <i>v</i> _e ) <i>ud</i> 6 <i>f</i> _{yv} 0.4 <i>ud</i> /0.9	5f _{yv} N/A 5f _{yv}	>=	N/A N/A N/A N/A N/A N/A Wrt interna	mm ²	corner)
Second sh Note a neg	Case $v_3 <$ Case $v_c <$ Case 1.6v Case 1.6v Case v ₃ >	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{c} < v_3 < 2$ . $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Let shear ut $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ $\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v - v_c)}{0.95 f_y}$ svsin $\alpha > 0v_c$ $\geq \frac{5(0.7v - 0.95)}{0.95}$ svsin $\alpha > 0$ illisation and/or $v_3$	0.4 <i>ud</i> /0.9 - <i>v</i> _e ) <i>ud</i> 6 <i>f</i> _{yv} 0.4 <i>ud</i> /0.9	5f _{yv} N/A 5f _{yv}	>=	N/A N/A N/A N/A N/A N/A Wrt interna	mm ²	corner)
Second sh Note a neg	Case $v_3 <$ Case $v_c <$ Case 1.6v Case 1.6v Case $v_3 >$	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{c} < v_3 < 2$ . $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Let shear ut $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ $\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v - v_c)}{0.95 f_y}$ svsin $\alpha > 0v_c$ $\geq \frac{5(0.7v - 0.95)}{0.95}$ svsin $\alpha > 0$ illisation and/or $v_3$	0.4 <i>ud</i> /0.9 - <i>v</i> _e ) <i>ud</i> 6 <i>f</i> _{yv} 0.4 <i>ud</i> /0.9	5f _{yv} N/A 5f _{yv}	>=	N/A N/A N/A N/A N/A N/A Wrt interna	mm ²	corner)
Second sh Note a neg indicates t	Case $v_3 <$ Case $v_c <$ Case 1.6v Case 1.6v Case v ₃ >	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{c} < v_3 < 2$ . $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Let shear ut $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ $\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v - v_c)}{0.95 f_y}$ svsin $\alpha > 0v_c$ $\geq \frac{5(0.7v - 0.95)}{0.95}$ svsin $\alpha > 0$ illisation and/or $v_3$	0.4 <i>ud</i> /0.9 - <i>v</i> _e ) <i>ud</i> 6 <i>f</i> _{yv} 0.4 <i>ud</i> /0.9	5f _{yv} N/A 5f _{yv}	>=	N/A N/A N/A N/A N/A N/A Wrt interna	mm ²	corner)
Second sh Note a neg indicates t	Case $v_3 <$ Case $v_c <$ Case 1.6v Case 1.6v Case v ₃ >	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{c} < v_3 < 2$ . $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Let shear ut $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ $\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v - v_c)}{0.95 f_y}$ svsin $\alpha > 0v_c$ $\geq \frac{5(0.7v - 0.95)}{0.95}$ svsin $\alpha > 0$ illisation and/or $v_3$	0.4 <i>ud</i> /0.9 - <i>v</i> _e ) <i>ud</i> 6 <i>f</i> _{yv} 0.4 <i>ud</i> /0.9	5f _{yv} N/A 5f _{yv}	>=	N/A N/A N/A N/A N/A N/A Wrt interna	mm ²	corner)
Second sh Note a neg indicates t	Case $v_3 <$ Case $v_c <$ Case 1.6v Case 1.6v Case v ₃ >	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{c} < v_3 < 2$ . $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Let shear ut $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ $\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v - v_c)}{0.95 f_y}$ svsin $\alpha > 0v_c$ $\geq \frac{5(0.7v - 0.95)}{0.95}$ svsin $\alpha > 0$ illisation and/or $v_3$	0.4 <i>ud</i> /0.9 - <i>v</i> _e ) <i>ud</i> 6 <i>f</i> _{yv} 0.4 <i>ud</i> /0.9	5f _{yv} N/A 5f _{yv}	>=	N/A N/A N/A N/A N/A N/A Wrt interna	mm ²	corner)
Second sh Note a neg indicates t	Case $v_3 <$ Case $v_c <$ Case 1.6v Case 1.6v Case v ₃ >	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{c} < v_3 < 2$ . $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Let shear ut $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ $\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v - v_c)}{0.95 f_y}$ svsin $\alpha > 0v_c$ $\geq \frac{5(0.7v - 0.95)}{0.95}$ svsin $\alpha > 0$ illisation and/or $v_3$	0.4 <i>ud</i> /0.9 - <i>v</i> _e ) <i>ud</i> 6 <i>f</i> _{yv} 0.4 <i>ud</i> /0.9	5f _{yv} N/A 5f _{yv}	>=	N/A N/A N/A N/A N/A N/A Wrt interna	mm ²	corner)
Second sh Note a neg indicates t	Case $v_3 <$ Case $v_c <$ Case 1.6v Case 1.6v Case v ₃ >	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{c} < v_3 < 2$ . $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Let shear ut $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ $\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v - v_c)}{0.95 f_y}$ svsin $\alpha > 0v_c$ $\geq \frac{5(0.7v - 0.95)}{0.95}$ svsin $\alpha > 0$ illisation and/or $v_3$	0.4 <i>ud</i> /0.9 - <i>v</i> _e ) <i>ud</i> 6 <i>f</i> _{yv} 0.4 <i>ud</i> /0.9	5f _{yv} N/A 5f _{yv}	>=	N/A N/A N/A N/A N/A N/A Wrt interna	mm ²	corner)
Second sh Note a neg indicates t	Case $v_3 <$ Case $v_c <$ Case 1.6v Case 1.6v Case v ₃ >	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{c} < v_3 < 2$ . $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Let shear ut $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ $\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v - v_c)}{0.95 f_y}$ svsin $\alpha > 0v_c$ $\geq \frac{5(0.7v - 0.95)}{0.95}$ svsin $\alpha > 0$ illisation and/or $v_3$	0.4 <i>ud</i> /0.9 - <i>v</i> _e ) <i>ud</i> 6 <i>f</i> _{yv} 0.4 <i>ud</i> /0.9	5f _{yv} N/A 5f _{yv}	>=	N/A N/A N/A N/A N/A N/A Wrt interna	mm ²	corner)
Second sh Note a neg indicates t	Case $v_3 <$ Case $v_c <$ Case 1.6v Case 1.6v Case v ₃ >	No links re $v_3 < 1.6v_c$ $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{c} < v_3 < 2$ . $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Let shear ut $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ Note $\Sigma A_{sv} \sin \alpha$ $\Sigma A_{sv} \sin \alpha$	$\geq \frac{(v - v_c)}{0.95 f_y}$ svsin $\alpha > 0v_c$ $\geq \frac{5(0.7v - 0.95)}{0.95}$ svsin $\alpha > 0$ illisation and/or $v_3$	0.4 <i>ud</i> /0.9 - <i>v</i> _e ) <i>ud</i> 6 <i>f</i> _{yv} 0.4 <i>ud</i> /0.9	5f _{yv} N/A 5f _{yv}	>=	N/A N/A N/A N/A N/A N/A Wrt interna	mm ²	corner)

						Job No.	Sheet No.		Rev.
	ISULTING			on Sheet				2	_
ENGI	NEERS	Consulting	Ligineers			jXXX		3	
						Member/Location			
ob Title		Member De					1		
Structure,	Member De	esign - Geo	technics Pa	d, Strip and	l Raft	Made by XX	Date <b>21</b>	/11/2021	hd.
Shaay Da				lidth of Ou		_			
snear De	sign for Be		lane of w		ter Footin	g			
Shear forc	e at columr	hase face	V = a		۰ [(B) ، ، ،	-(h or D))/	N/A	٧N	
	ce at column							kN/m	
	ce at 1.0d _{x,s}			, ,,		. [(B _{stran 1} -			
	ce at 1.0d _{x,s}					<u> </u>		kN/m	
	above shear					outer footin			
Iltimate s	hear stress	for bending	g in plane o	f width, v _{ult}	,x=(V _{x,ult} /L	trap,1)/(100	N/A	N/mm ²	
	hear stress						N/A		N/A
esign she	ear stress fo	or bending i	in plane of	width, v _{d,x} =	$(V_x/L_{strap,1})$	/(1000.d _{x,s}	N/A	N/mm ²	
Shear cap	pacity enhai	ncement by	[,] calculating	y v _d at d fro	om "suppoi	t" and com	paring aga		
	ed v _c as cla							oport" and	
omparing	g against en	hanced v _c	within 2d o	f the "supp	ort" as clau	ıse 3.4.5.8	BS8110;)		
	nsile steel r		nt provided	, A _{s,prov,x,s}				mm²/m	
$_{w} = 100A$	s,prov,x,s/(100	00.d _{x,s} )					N/A		
_{c,x} = (0.7	'9/1.25)(ρ _w f	_{cu} /25) ^{1/3} (40	$00/d_{x,s})^{1/4};$	ρ _w <3; f _{cu} <4	0; (400/d _x	_{,s} ) ^{1/4} >0.67	N/A	N/mm ²	
heck v _{d,}	$x < v_{c,x}$ for	no links					N/A		
	Concrete s	shear capac	ity v _{c,x} .(100	00.d _{x,s} )			N/A	kN/m	
	$x < v_{d,x} < 0$						N/A		
	Provide no						N/A	mm²/mm/	m
	Concrete a	and nominal	l links shea	r capacity (	$0.4 + v_{c,x}$ ).	$(1000.d_{x,s})$	N/A	kN/m	
Check V _{d,2}	_x > 0.4 + v				//0.0F(.);		N/A	2	
	Dura dala ale		$_{v} / S > 100$	$0.(V_{d,x}-V_{c,x})$	/(0.95f _{yv} ) I	.e. A _{sv} / S	N/A	mm²/mm/	m
	Provide sh	ear links A _s	ببعمام مناميا	and a site of A				1 817	
	Provide sh Concrete a	ear links A _s and design l	inks shear	capacity (A	$_{sv,prov,x}/S_{x}).$	(0.95f _{yv} ).d,	N/A	kN/m	
	Concrete a	and design l			_{sv,prov,x} /S _x ).	(0.95f _{yv} ).d,		-	
	Concrete a ided by all li	and design l nks per me			sv,prov,x/S _x ).	(0.95f _{yv} ).d,	N/A	mm²/m	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	m N/A
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	
ried A _{sv,pr}	Concrete a ided by all li rov,x / S _x val	and design l inks per me ue	etre, A _{sv,prov}	,x	_{sv,prov,x} /S _x ).		N/A N/A	mm²/m mm²/mm/	

CON		En electrication	. Calaulatia	Charact		Job No.	Sheet No.		Rev.
	ISULTING			on Sheet		jXXX	6	4	
LIGI		J	J	[	F	Member/Location		•	
	Chrustian	Mambar	alan Caa	tachnica Da	d Ctuin and				
ob Title		Member De				Made by XX	Date <b>31</b>	/11/2021	hd
structure,	Member De	esign - Geo		u, suip and			21	/11/2021 ⁰	
Shear De	sign in Bea	am							
Shear forc	e at columr	1 base rig	ht centrelir	$e_{I} V_{V,1} = F_{I}$		Betran	N/A	kN	
Shear forc	e at outer f	ootina riahi	t face. V., a	$= F_{\text{ctrap} \times 1} \dots$	$c - F_{col,v,1,uls}$	,0L5,1 · — strap	N/A		
	ce at columr								
Shear forc	e at columr	n 2 base rig	ht centrelir	$v_{v_4} = q_v$	$_{N   II   S 2}$ . $B_{stran}$	$_{2}.B_{\text{stran }2}/2$	, N/A		
Shear forc	e at critical	location, V	$v = MAX(V_v)$	$V_{v,1}, V_{v,2}, V_{v,3}$	$V_{v,4}$		N/A		
			, <u> </u>						
Iltimate s	hear stress	in beam, v	ult.v=Vv/(bbe		0.8f ^{0.5} &	5N/mm ² )	N/A	N/mm ²	
	hear stress						N/A		N/A
	ear stress ir							N/mm ²	
	tively, shea				e <b>r</b> calculati	ng v _d at d			
	g against un								
	g against en				ort as claus	e 3.4.5.8 B	S8110 igno	red;)	
rea of ter	nsile steel r	einforceme	nt provided	, A _{s,prov,y,h}			N/A	mm ²	
lote it is a	assumed the	at A _{s,prov,y,h}	provided v	where critica	al shear for	ce occurs;			
w = 100A	s,prov,y,h/(bbe	_{eam} .d _{y,h} )					N/A	%	
v _{c,y} = (0.7	<b>'9/1.25)(</b> ρ _w f	_{cu} /25) ^{1/3} (40	00/d _{y,h} ) ^{1/4} ;	ρ _w <3; f _{cu} <4	0; (400/d _y	_{/,h} ) ^{1/4} >0.67	N/A	N/mm ²	
		for no link	s				N/A		
Check v _{d,}	_y < 0.5v _{c,y}								
Check v _{d,}		hear capac		am.d _{y,h} )			N/A	kN	
	Concrete s	hear capac	ity v _{c,y} .(b _{bea}					kN	
	Concrete s 5v _{c,y} < v _{d,y}	hear capac < <b>0.4 + v</b> c	ity v _{c,y} .(b _{bea}	inal links			N/A		
	Concrete s 5 <b>v_{c,y} &lt; v_{d,y}</b> Provide no	hear capac < <b>0.4 + v</b> _c minal links	ity v _{c,y} .(b _{bea} , <b>y for nom</b> such that <i>A</i>	inal links A _{sv} / S > 0.4		5f _{yv} ) i.e. A _s	N/A N/A	mm²/mm	
	Concrete s 5 <b>v_{c,y} &lt; v_{d,y}</b> Provide no	hear capac < <b>0.4 + v</b> c	ity v _{c,y} .(b _{bea} , <b>y for nom</b> such that <i>A</i>	inal links A _{sv} / S > 0.4			N/A	mm²/mm	
Check 0.5	Concrete s 5 <b>v_{c,y} &lt; v_{d,y}</b> Provide no Concrete a	hear capac < 0.4 + v _c minal links and nominal	ity v _{c,y} .(b _{bea} , <b>_y for nom</b> such that <i>A</i> I links shea	inal links A _{sv} / S > 0.4			N/A N/A N/A	mm²/mm	
Check 0.5	Concrete s 5v _{c,y} < v _{d,y} Provide no Concrete a y > 0.4 + v	hear capac < 0.4 + v _c minal links nd nominal v _{c,v} for des	ity v _{c,y} .(b _{bea} , <b>y for nom</b> such that <i>A</i> I links shea <b>ign links</b>	inal links A _{sv} / S > 0. r capacity (	0.4 + ν _{c,γ} ).	$(b_{beam}d_{y,h})$	N/A N/A N/A	mm²/mm kN	
Check 0.5	Concrete s 5v _{c,y} < v _{d,y} Provide no Concrete a y > 0.4 + v Provide sh	hear capac < 0.4 + v _c minal links and nominal v _{c,y} for des ear links A _s	ity $v_{c,y}$ . (b _{bea} ,y <b>for nom</b> such that A l links shea <b>ign links</b> y / S > b _{bea}	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm kN mm²/mm	
Check 0.5	Concrete s 5v _{c,y} < v _{d,y} Provide no Concrete a y > 0.4 + v Provide sh	hear capac < 0.4 + v _c minal links and nominal v _{c,y} for des ear links A _s	ity $v_{c,y}$ . (b _{bea} ,y <b>for nom</b> such that A l links shea <b>ign links</b> y / S > b _{bea}	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$	N/A N/A N/A N/A N/A	mm²/mm kN mm²/mm	
Check 0.5 Check v _d ,	Concrete s 5v _{c,y} < v _{d,y} Provide no Concrete a y > 0.4 + v Provide sh Concrete a	hear capac < 0.4 + v _c minal links and nominal v _{c,y} for des ear links A _s and design l	ity $v_{c,y}$ .( $b_{bea}$ such that <i>A</i> l links shea <b>ign links</b> v / S > $b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/capacity (A$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A	mm²/mm kN mm²/mm kN	
Check 0.5 Check v _d , Area provi	Concrete s 5v _{c,y} < v _{d,y} Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a creation	ity $v_{c,y}$ .( $b_{bea}$ such that <i>A</i> l links shea <b>ign links</b> v / S > $b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/capacity (A$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ²	
Check 0.5 Check v _d , Area provi	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/capacity (A$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N / A
Check 0.5 Check v _d , Area provi	Concrete s 5v _{c,y} < v _{d,y} Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/capacity (A$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A
Check 0.5 Check v _d , area provi	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/$ capacity (A	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A
heck 0.5 heck v _d , rea provi ried A _{sv,pr}	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/$ capacity (A	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A
check 0.5 Check v _d , rea provi	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/$ capacity (A	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A
check 0.5 Check v _d , rea provi	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/$ capacity (A	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A
Check 0.5 Check v _d , area provi	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/$ capacity (A	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A
check 0.5 Check v _d , rea provi	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/capacity (A$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A
check 0.5 Check v _d , rea provi	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/capacity (A$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A
check 0.5 Check v _d , rea provi	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/capacity (A$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A
check 0.5 Check v _d , rea provi	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/capacity (A$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A
check 0.5 Check v _d , rea provi	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/capacity (A$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A
heck 0.5 heck v _d , rea provi ried A _{sv,pr}	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/capacity (A$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A
heck 0.5 heck v _d , rea provi ried A _{sv,pr}	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/capacity (A$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A
Check 0.5 Check v _d , Area provi	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/capacity (A$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A
Check 0.5 Check v _d , Area provi	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/capacity (A$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A
Check 0.5 Check v _d , Area provi	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/capacity (A$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A
Check 0.5 Check v _d , Area provi	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/capacity (A$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A
Check 0.5 Check v _d , Area provi	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/capacity (A$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A
check 0.5 Check v _d , rea provi	Concrete s $5v_{c,y} < v_{d,y}$ Provide no Concrete a y > 0.4 + v Provide sh Concrete a ided by all li rov,y / Sy val	hear capac < 0.4 + v _c minal links and nominal v _{c,v} for des ear links A _s and design l inks in a cro ue	ity $v_{c,y}$ .(b _{bea} such that A l links shea <b>ign links</b> $v / S > b_{bea}$ inks shear	inal links $A_{sv} / S > 0.4$ r capacity ( $m(v_{d,y}-v_{c,y})/capacity (A$	0.4 + v _{c,y} ). /(0.95f _{yv} ) i.	$(b_{beam}d_{y,h})$ e. A _{sv} / S >	N/A N/A N/A N/A N/A N/A	mm ² /mm kN mm ² /mm kN mm ² mm ² /mm	N/A

CON						Job No.	Sheet No.		Rev.
		Engineering Consulting		on Sheet		jXXX	6	5	
			5			Member/Location	-	-	
ob Title	Structure	Member De	sian - Geo	technics Pa	d Strin ar				
		esign - Geot				Made by XX	Date 21	/11/2021	Shd.
				-,p					
	<b>D !</b>	<b>-</b> -							
Detailing	Requirem	ents							
All detailin	g requirem	ents met ?					N/A		
						footing (<3c		mm	N/A
lax hoggi	ng steel rei	nforcement	pitch in be	am (<3d _{y,h}	, 50mn</td <td>n)</td> <td>N/A</td> <td>mm</td> <td>N/A</td>	n)	N/A	mm	N/A
Max	timum spaci:	ng: 0.5%	% Ast or less	s - 300mm					
	-			nd 1.0% - 22					
		1.0%	6 Ast or gre	ater - 175mm	n				
4000 000 0	a aka - 1		nitele in l	no of white		fo otin -	в 1 / -		
	-	nforcement nforcement			i or outer	looting		mm mm	N/A N/A
lax noggi									
1in saggin	g steel rein	forcement	pitch in pla	ne of width	of outer f	ooting (>10	N/A	mm	N/A
	-	forcement					· · · · · · · · · · · · · · · · · · ·	mm	N/A
lote an all	lowance ha:	s been mad	e for laps i	n the min p	itch by in	creasing the	criteria by	<i>the bar dia</i>	meter.
Sagaina st	eel reinforc	ement dian	neter in nla	ne of width	of outer t	footing, φ _{sx} (	N/A	mm	N/A
		ement dian						mm	N/A
						(<= 0.04.10	-		N/A
		orcement in		0.04.b _{beam}	.h _{beam} )		N/A	%	N/A
1in link dia	ameter, _{dun}	ر _ې (>=8mm	ı)				N/A	mm	N/A
		5d _{y,h} , <=30		1AX(100mn	n,50+12.5	ōn _{link,y} )	-	mm	N/A
A _{sv,prov,y} / (	b _{beam} .S _y ) (2	>0.10% G4	60; >0.170	% G250)			N/A	%	N/A
lata that	anh cinala	lover of rein	forcoment	accumed f		in coloulation	a of nitch i		
vole that t	Shiy shgle i	ayer or reir	norcement	assumed it	or Dearns	in calculation			

CON	SULTING	Engineerin	n Calculatio	n Sheet		Job No.	Sheet No.		Rev.
ENGI	SULTING N E E R S	Consulting	Engineers	in oncer		jXXX	6	6	
						Member/Location			
ob Title	Structure,	Member De	sian - Geo	technics Pa	d, Strip and	Drg.			
Structure,	Member De	sian - Geol	echnics Pa	d, Strip and	l Raft	Made by XX	Date 21	/11/2021	hd.
				nforcemer					
				oting reinfo		tails:			
					<u> </u>				

CON	SULTING	Engineerin	a Calculatio	on Sheet		Job No.	Sheet No.		Rev.
ENGI	NEERS	Consulting	Engineers	in Sheet		jXXX	6	7	
						Member/Location			
	Structure	Momber D		tochnice D-					
Job Title	Member De	Member De	tochnice Do	d Strip and	u, Strip and	Made by XX	Date <b>31</b>	/11/2021	hd.
Structure,		esign - Geo	lechnics Pa	u, suip and	Ικαι		21	/11/2021	


			Job No.	Sheet No.		Rev.
	ineering Calculation Sheet				58	
ENGINEERS Cons			jXXX	C	08	
			Member/Location			
	nber Design - Geotechnics Pa			I		1
Structure, Member Design	<ul> <li>Geotechnics Pad, Strip an</li> </ul>	d Raft	Made by XX	Date 21	/11/2021	3hd.
	<u> </u>					
Raft Foundation Dimens						
	vo-dimensional version of the					
	ap footings. These two-dime effectively be analysed and					
	erted one- or two-way span	-				
Width, B _{raft} (<=L _{raft} )				10.000	m	N/A
Length, L _{raft} (>=B _{raft} )				10.000	m	N/A
Thickness of foundation, T	raft			1.000	m	
Raft Foundation SLS Lo	ading					
	oad from selected building a			100000	kN	N/A
	is to be included and is the L		,			
	rea may for instance refer to					
	oor plate area, as they shoul					
	sing) weight, $F_{above,soil} = B_{raft}$ .			N/A	-	
	the footing is included for en		-			-
	backfilled, for conservatism					≈γ _{sat} ;
Total foundation SLS vertice	cal (downward) load, F _{raft,v} =	= F _{bdarea} + F	above,soil	N/A	kN	
					L-D-	
Gross working pressure, q	$W = F_{raft,v} / (B_{raft} \cdot L_{raft})$			N/A	кРа	
Deft Foundation (Invest						
Raft Foundation (Invert	ted) ULS Loading					
SIS vertical (downward) k	oad from selected building a	roa minus r	aft DI E .	N/A	LN.	
	oad from selected building a					
	pressure from selected buildi					
	cal (downward) pressure can	-	-	,		
	alysis as the ULS pressure for					
design of the solid or strip	, ,					
	<u> </u>					
			1			

CON	SULTING	Engineerin	g Calculatio		Job No.	Sheet No.		Rev.	
ENGI	NEERS	Consulting	Engineers			jXXX	6	59	
						Member/Location			
ob Title	Structure,	Member De	esign - Geo	technics Pa	d, Strip and	Drg.			
			technics Pa			Made by XX	Date <b>21</b>	/11/2021	Shd.
aft Foun	dation Rei	inforceme	nt Design						
	<u> </u>	<i>c</i> .							
						lti column fo ninating in			
						way spann			
	foundation								
									1

CON	SULTING	Enginoorin	a Calculatio		Job No.	Sheet No.		Rev.	
ENGI	N E E R S	Consulting	Engineers	n Sneet		jXXX	7	0	
						Member/Location			
lob Title	Structuro	Mombor Do	sign - Coo	technics Pa	d Strin and				
				d, Strip and		Made by XX	Date <b>71</b>	/11/2021	hd.
Sti ucture,		sign - Geo		u, strip and		~ ^^	21	/ 11/ 2021	
Standard	Raft Foun	dation Rei	nforceme	nt Details					
	Design reir	nforcement	based on t	he combina	tion of star	ndard multi	column foo	oting,	
	standard c	ombined fo	oting and s	tandard str	ap footing	reinforcem	ent details,		
	culminating	g in the sta	ndard reinf	orcement d	etailing of a	a two-dime	nsional inve	erted	
	flat, one- c	or two-way	spanning s	lab as the r	aft foundat	ion;			
			<u> </u>		<u> </u>				

CON	SULTING	Engineerin	n Calculatio	n Sheet		Job No.	Sheet No.		Rev.
ENGI	NEERS	Consulting	Engineers	in Sheet		jXXX	7	'1	
						Member/Location			
1. h. Title	Chrustian	Mambar Dr	aian Caal	tachaica Da					
Job Title	Member De	Member De	tochnics Pa	d Strip and	u, Strip and I Poft	Made by XX	Date <b>71</b>	/11/2021	thd.
Su ucture,		esign - Geo		u, Suip and	ΙΚαιί		21	/11/2021	
				<u> </u>	<u> </u>				

CON	SULTING	Engineerin	a Calculatio	on Sheet		Job No.	Sheet No.		Rev.
ENGI	NEERS	Consulting	Engineers	In Sheet		jXXX	7	2	
						Member/Location			
1.6 Tible	Chrustian	Mambar Dr	aian Caa	tachnica Da					
Job Title	Member De	Member De	tochnics Pa	d Strip and	u, Strip and I Poft	Made by XX	Date <b>71</b>	/11/2021	thd.
Su ucture,		esign - Geo	lechnics Pa	u, suip and	ΙΚαιί		21	/11/2021	
			<u> </u>						
			-		-				
l									

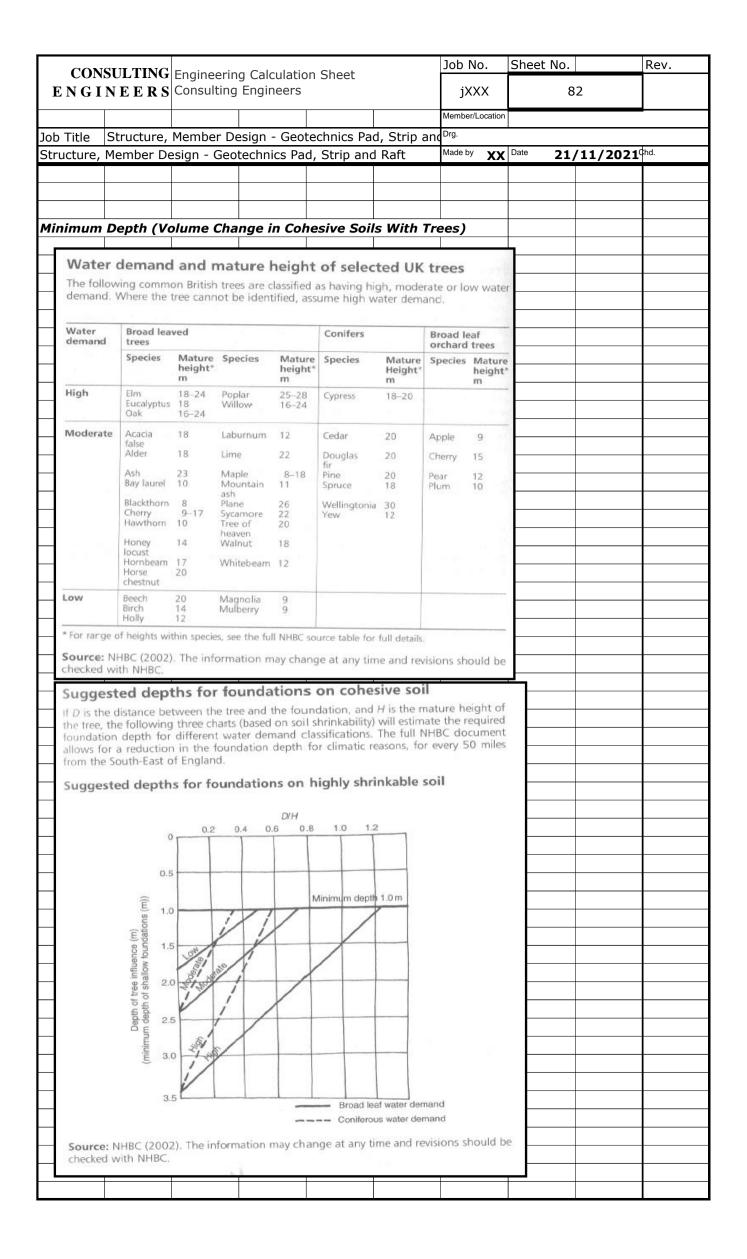
CON	SULTING	Engineerin	a Calculatio	on Sheet		Job No.	Sheet No.		Rev.
ENGI	NEERS	Consulting	Engineers	In Sheet		jXXX	7	'3	
						Member/Location			
lah Titla	Chrusture	Marahan Da	aian Caa	tachnica Da					
Job Title	Member De	Member De	tochnics Pa	d Strip and	u, Strip and I Poft	Made by XX	Date <b>71</b>	/11/2021	thd.
Structure,		esigii - Geol	lechnics Pa	u, suip and	ΙΚαιί		21	/11/2021	
					<u> </u>				
					<u> </u>				
			<u> </u>						

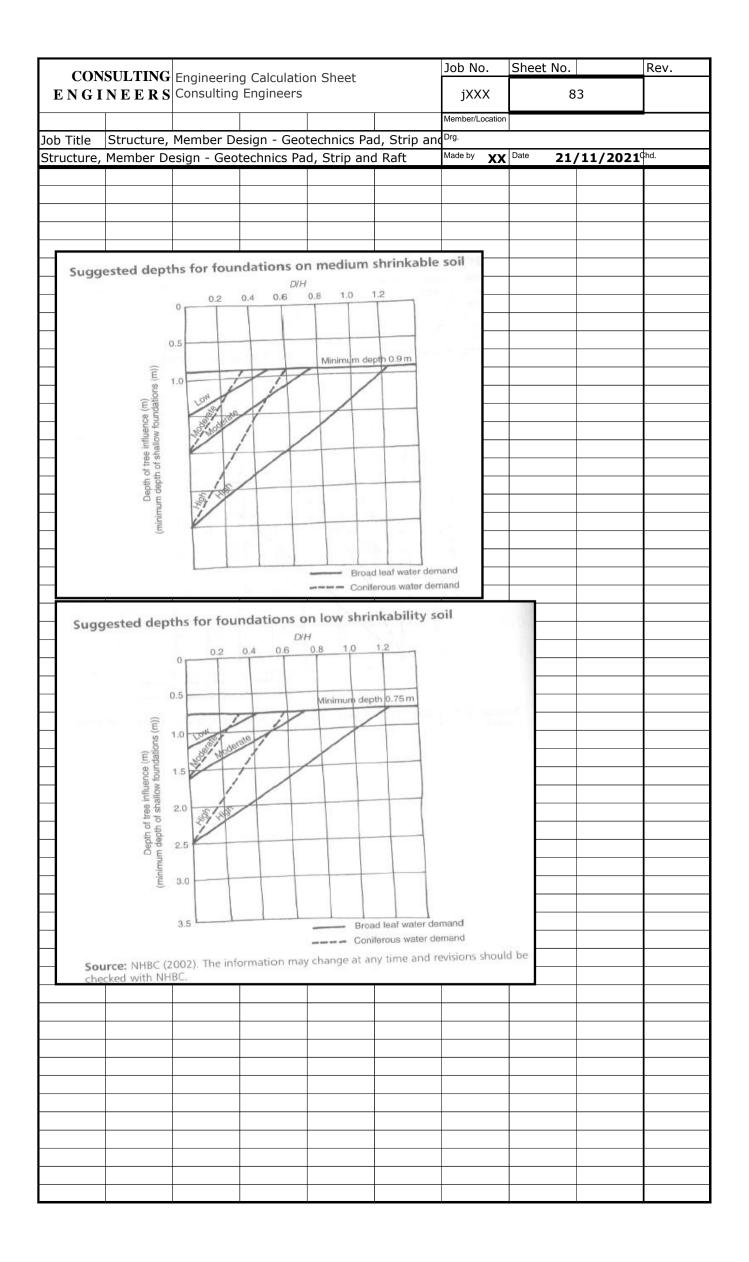
CON	SULTING	Engineerin	a Calculatio	n Sheet		Job No.	Sheet No.		Rev.
ENGI	NEERS	Consulting	Engineers	in Sheet		jXXX	7	'4	
						Member/Location			
1. h. Title	Chrusture	Marahan Da	aian Caa	tachnica Da					
Job Title	Member De	Member De	tochnics Pa	d Strip and	u, Strip and I Poft	Made by XX	Date <b>71</b>	/11/2021	thd.
Structure,		esigii - Geol	lechnics Pa	u, Suip and	ΙΚαιί		21	/11/2021	
					<u> </u>				
					<u> </u>				

CON	SULTING	Engineerin	a Calculatio	on Sheet		Job No.	Sheet No.		Rev.
ENGI	NEERS	Consulting	Engineers	in Sheet		jXXX	7	5	
						Member/Location			
1. h. Title	Chrustian	Mambar Dr	aian Caa	tachnica Da					
Job Title	Member De	Member De	tochnice Do	d Strip and	u, Strip and	Made by XX	Date <b>31</b>	/11/2021	hd.
Su ucture,		esign - Geo	lechnics Pa	u, suip and	ΙΚάιι	<b>XX</b>	21	/11/2021	
			<u> </u>						
			-		-				
l							<u> </u>		

CON	SULTING	Engineerin	a Calculatio	on Sheet		Job No.	Sheet No.		Rev.
ENGI	NEERS	Consulting	Engineers	In Sheet		jXXX	7	6	
						Member/Location			
1.h. Title	Chrustian	Marahan Da	aian Caa	tachnica Da					
Job Title	Member De	Member De	tochnics Pa	d Strip and	u, Strip and	Made by XX	Date <b>71</b>	/11/2021	thd.
Structure,		esigii - Geol	lechnics Pa	u, suip and	Ικαι	<b>XX</b>	21	/11/2021	

CON	SULTING	Engineerin	a Calculatio	on Sheet		Job No.	Sheet No.		Rev.
ENGI	NEERS	Consulting	Engineers	in Sheet		jXXX	7	7	
						Member/Location			
1. h. Title	Chrusture	Marahar Da	aian Caa	tachnica Da					
Job Title	Member De	Member De	tochnics Pa	d Strip and	u, Strip and I Poft	Made by XX	Date <b>71</b>	/11/2021	thd.
Structure,		esigii - Geo	lechnics Pa	u, suip and	ΙΚάιι	<b>XX</b>	21	/11/2021	


Double and an end of the set of	CON	SULTING	Engineerin	a Calculatio	on Sheet		Job No.	Sheet No.		Rev.
Job Title Structure, Member Design - Geotechnics Pad, Strip and Drg.	ENGI	NEERS	Consulting	Engineers	In Sheet		jXXX	7	8	
Job Title Structure, Member Design - Geotechnics Pad, Strip and Drg.										
	1.6 Title	Chrusture	Marahan Da	aian Caa	tachnica Da					
		Structure,		tochnice Do	d Strip and	u, Strip and	Made by	Date <b>31</b>	/11/2021	hd.
Image: sector     Imag	Structure,		esigii - Geol	lechnics Pa	u, suip and	Ικαι	<b>XX</b>	21	/11/2021	
Image: sector of the sector										
Image: Section of the section of										
Image: Section of the section of t										
ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage <thimage< th="">ImageImageImage<thi< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thi<></thimage<>										
Image: Section of the section of										
Image: Problem     Image: Probl										
Image: Section of the section of										
Image: Section of the section of										
Image: Problem     Imade: Problem     Image: Problem     Image: Proble										
ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage <thimage< th="">ImageImageImage<thi< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thi<></thimage<>										
Image: sector of the secto										
Image: Problem     Imade: Problem     Image: Problem     Image: Proble										
Image: sector of the sector				<u> </u>						
ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage										
Image: Section of the section of t										
ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage										
Image: Problem     Imade: Problem     Image: Problem     Image: Proble										
Image: birth of the section of the										
Image										
Image: series of the series										
Image: Section of the section of t										
Image: Section of the section of t										
Image: sector of the sector										
Image: sector of the sector				-						
Image: sector of the sector										
Image: sector of the sector										
Image: series of the series										
IndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexInd										
Image: series of the series										
Image: set of the										
Image: border										
Image: set of the										
Image: state in the state in										
Image: state of the state of										
Image: book book book book book book book boo										
Image: state s										
Image: state of the state of				<u> </u>		<u> </u>				
Image: state of the state of										
Image: state of the state of										
Image: selection of the										
Image: selection of the										
Image: selection of the										
Image: state s										
Image: state of the state										


<b> </b>					

CONSULTIN	Engineerin	a Calculatio	n S	heet		Job No		Sheet I	No.		Rev.
ENGINEER				neee		jXXX	ĸ		7	9	
						Member/Lo	cation				
Job Title Structure	, Member De	esian - Geol	ech	nics Pa	d Strin an	Drg.					
Structure, Member I		5			, ,	Made by	xx	Date	21	/11/2021	Chd.
			., -	- p			7071		/		
Building Regulation	ons Minimur	m Dimensi	ons								
Minimum Width											
											<u> </u>
Table 10 M	inimum wic	th of strip	o foo	otings							
					Tota	load of lo		earing wa /linear <i>m</i> e		not more tha	n
Type of Ground (including Co	ndition	Field test				20 30		40 50		60 70	
	ground	Applicable				Minimum v	vidth	of strip fo	ounda	ation (mm)	
Rock sa	t inferior to ndstone, limestor firm chalk	Requires at l ne or other med pick for exca	hanic	ally opera		in each c	ase e	qual to the	e widt	th of wall	
II Gravel or Sand Me	edium dense	Requires pic Wooden peg section hard	50m	m square	in cross	250 300	4	400 500		600 650	
III Clay Sti Sandy Clay Sti		Can be inde	nted s	slightly by	thumb 2	:50 300	4	400 500		600 650	
V Clay Fir Sandy Clay Fir		Thumb make	as imp	pression e	asily 3	900 350	4	150 600		750 850	
Silty sand Lo	920 929 939	Can be exca Wooden peg cross section	50m	m square	in	100 600	1			on soil types V	
VI Silt So Clay So Sandy clay So Clay or silt So	ft ft	Finger pushe	əd in ı	up to 10m	m 4	150 650	I	provisio	ns of	ot fall within the this section if seeds 30 kN/m	the
Clay Ve Sandy clay Ve	ry soft ry soft ry soft ry soft	Finger easily	push	ned in up t	o 25mm	Re	efer to	) specialist	advi	се	
											╤┛
Stepped Foundation	ons										
Diagram 22 Eler foundation	vation of st	epped		overlap	oundations by twice ess of the	the heig	ght	of the s	step	, by the	
See para 2E2d and e				whiche	ever is grea	ater (see	e Di	agram 2	22).	,	
foundations sho change in level	ould unite at each				nch fill fou						
	<b></b>				ce the heig ever is grea		ер	or 1 me	tre,	F	
I L		<b>•</b>	- 11		teps in fou		ns s	hould n	not I	be of	
		-ls		greater	height tha	an the t	hick	iness of			
$\vdash$		T	ļĽ	founda	tion (see D	lagram	22				
minimum overlap L =	twice height of st	ep.or									
H	thickness of found or 300mm, which		┠								
S should not be great			┣								
(For trench fill founda minimum overlap L =	twice height of ste	ep.									
	or 1 metre, which is greater)	ever									
Piers and Chimney	/S										
				- 1.	£	an ef	1.0.0	. h		a ar d	L
Diagram 23 Pi	ers and chi	mneys		f. chir	foundat nneys sho						
See para 2E2f				Dia: be	gram 23 a less than t al thickenii	nd the j he valu	proj e o	ection 3 f P whe	Xsł	hould neve	
		х									
	X    =		-								
			_								
┝╢╧┥┝╸											
			_								
projection X shou	d not be less tha	an P									
				-							

CONSULTING	tمد		Job No	).	Shee	t No.		Rev.			
ENGINEERS			/ii 5iic			jXX	jXXX 80				
	5				F	_		<b></b>	-		
						Member/Lo	cation				
	Member De										
Structure, Member De	esign - Geo	technics Pa	d, Str	ip anc	l Raft	Made by	XX	Date	21	/11/2021	Chd.
Minimum Thickness	5										
				с.	minimur	n thick	noe	e T of	f.con/	aroto	<u> </u>
Diagram 24 For	undation d	imensions	\$							whicheve	r –
See para 2E2o										sing Table	
		Nall should be tral on foundat			d as an ac					tions may to strip	be
					ndations.						
	<b> </b>		┥║								
			_								
of the foundation (T) should either be P o	r										
150mm, whichever i greater	s ∓_⊑		-								
	l F	oundation widt	h								
-	sh	ould be not les	ss								
-	dime	n the appropria ension in Table	10								
Trench fill foundation	e may be use	l ae an									
alternative to strip fo		ା ପତ୍ର ପା ।									
— Foundations—Ba	sic Sizing										
Basic Sizing ~ 1 two factors —	he size of	a foundat	ion is	basio	ally depen	ident o	n				
1. Load being tr 2. Bearing capa		oil under d	rooos	ed fo	undation.						
Bearing capacit						obtaina	4				
from tables su					,						
foundations and	BS 8103: S	Structural (									
from soil investi	gation resu	ilts.									
Typical Exam	iples ~										
ground T	ক্ষি .			Г		ound	- [				
level 7	X •••1	*		n.	e la la la	vel		-			
			$\overline{\Lambda}$	$\sim$		Z J					
depth below ground level		being trans			81/	depth below ground level					
		gh walls = 50	KIN Z M		84	UNO					
- 6 A		. less than or 150mm		ы		λ6 ≽					
	i <b>a - −</b> mir	nimum				peio					
E E	BKA			0		£					
	.0	¥		D	٥,	8	[				
				-	W		- {				
safe bearing co gravel subsoil:			fe bec bsoil :	ning c = 80 ⊮	apacity of a N/m ²	clay					
W = load	=	50_ w	=	load	d = <u>5</u>	50					
bearing c = 500mm mi		00			apacity (	30					
The above wid	ths may not		quate	work	ing space v						
the excavatio	n and can	be increase	d to	give r	equired spo	ice.	l				
taken direct f											
	<u>/</u>	<b>at</b> 1 <b>a a a b b</b>	<b>.</b>		_ /						
column load = 450 kN		ot less than nass concret		- P		imn load					
		einforced to	design	1	1 1	75 k N					
square base of the				° 0	۵.	square					
		O h h l / -2		<b>A</b>		base					
<ul> <li>bearing capacity</li> <li>area of base =</li> </ul>					y of subsoil 8						
	DC 150				bc 85	-					
≈ 3 m ² ∴side	=√3 =1·732 m.in		6.765	`m* ∴	side = $\sqrt{6}$	765 min.					
					= 2.0						

CON	SULTING	Engineerin	a Calculatio	Job No.	Sheet No.	Rev.			
		Consulting		in Sheet		jXXX	8	31	
						Member/Location			
106 T:-1 -	Ctructure	Mombor D		tochnice Dr.	d Ctain				
Job Title Structure				technics Pac d, Strip and			Date 21	/11/2021	hd.
Structure,		esign - Geo	lechnics Pa	u, suip and	Rail	XX	21	/11/2021	
Minimum	Denth (Fr	ost Heave	in Granul	ar or Cohe	sive Soils	)			
Minimu	m depth is	450mm	to avoid <b>fr</b>	ost heave	, but this	is often e	xceeded d	ue to other	
Minimum	Depth (Ve	olume Cha	nge in Col	nesive Soil	s Without	Trees)			
	undian black		a a lla a a lu		ulau aatla				
	аррисаріе т	o conesive	solis only	, not gran	ular solis.				
For the	re to be no	o influence	from trees	, the follow	ving <b>minin</b>	num dista	nce must	be satisfied	
	2002):-								
				ature heigh 5 x mature					
				mature heig					
	-								
				me change	es due to v	wetting and	d drying of	expandable	
		/s are as fo index (10-							
		icity index							
		<u>y index (&gt;4</u>				·			J
			- Ar.						
					h of the found pe of soil, dist			~	
				tree and	water demand	d of the tree.	F	5	
5 J. 1 S.					mand is depe id type of tree		20	· /	
				20m high	n oak tree in h	igh shrinkage	Y	`]	
	void frost heav ild be construc			· · · · ·	from the fac on, the founda		1.7=	P	
	nm below the				st 2,50m deep		71		
		5	6	-					
		2		1 T			11		
	ible soils (clay) be at least				· ///////		N / V /		
750mm	deep for clay	Min. 450 mr	n mi j _e t		High sh	rinkage soils			
	low potentiał ge and Im wh	ere N	tin. 750 mm	2. S. R.	close to	mature tree			
there is	high potentia		-	S	1m 2.4	3m deep			
shrinka	ge			6	T 111-3,4	smueep			
				16 B	+				
Figure	3 13 Den	th of found	lations and	stability (i	nformation	adapted f			
2000)		un or round	auons and	i stability (ii	normation	adapted 1			
,									
<u> </u>									





	ISULTING					Job No.	Sheet No.	Rev	
N G I	NEERS	Consultir	ig Enginee	15	1	jXXX	84		
						Member/Location	ו		
itle				eotechnics Pa					
ture,	Member D	esign - Ge	eotechnics	Pad, Strip and	d Raft		Date 21/1	<b>21/11/2021</b> ^{Chd.}	
ow to	determine	foundatio	n denth (m	) adjacent to t	roos in s	hrinkable soils			
Speci		Touridatio	in deptin (in	Maximum r		Exclusion zon		ision zone	
speci	62			height (m)	nacure	1 (m)	2 (m)		
High	water dema	nd trees							
Elm, V	Villow			24		24.0	30.0		
Eucaly	/ptus			18		18.0	22.5		
Hawtl	horn			10		10.0	12.5		
Oak, (	Cypress			20		20.0	25.0		
Poplar	r			28		28.0	35.0		
Mode	arate water (	demand tr	ees						
Acacia	a, Alder, Monk	œy puzzle, S	pruce	18		9.0	13.5		
Apple	, Bay laurel, P	lum		10		5.0	7.5		
Ash				23		11.5	17.3		
Beech	, Cedar, Doug	las fir, Larch	n, Pine	20		10.0	15.0		
Blackt	horn:			8		4.0	6.0		
Cherry	y, Pear, Yew			12		6.0	9.0		
Chest	nut			24		12.0	18.0		
	Sycamore			22		11.0	16.5		
	tain ash			11		5.5	8.3		
Plane				26		13.0	19.5		
_	ngtonia			30		15.0	22.5		
	water demai	nd trees						-	
Birch				14		2.8	7.0		
Elder				10		2.0	5.0		
Fig, H				8		1.6	4.0		
-	Laburnum			12		2.4	6.0		
Hornt				17		3.4	8.5		
Magn	olia, Mulberry	/		9		1.8	4.5		
_	dation deptl								
Modifi	ied Plasticity	Index		Volume char potential	nge	Outside exclusi zone 1	ion Outsi zone	de exclusion 2	
40%	and greater			High		1.50	1.00	-	
	to less than 4	0%		Medium		1.25	0.90		
	to less than 2			Low		1.00	0.75		
Note 1 Det 2 Det apj	<b>s</b> termine whet termine the fe propriate excl	her a partic oundation c lusion zone.	lepth from th	of tree is outside he lower part of	the table		ar soil condition		
	1								

	CON	SULTING	Engineerin	a Calcul	lation Sheet		Job No.	Sheet No.			Rev.											
]			Consulting				jXXX	8	35													
				5		1	Member/Location															
1.1	. <b></b>	Churchter	Manahan Da			d Chuin an																
	o Title				Geotechnics Pa		Made by XX	Date <b>31</b>	/11/7	0001d	hd											
วเ	ucture,		esign - Geo		Pad, Strip and		<b>XX</b>	Z1,	/11/2	.021												
50	homo I	) Decian (Co	hesive Soi	ile)																		
30	ineme i																					
	$q_{allowable}$	≈14.2N																				
			on day																			
		d footing	_				( ) ()															
	q _{allowa}	$able = 2C_u$	Spread foo	oting on	undrained co	ohesive soil	$(\gamma_f = 2.5)$															
	a)	Cohesive soil	ls (clays)																			
	Strip for	oting	$q_{safe} = \frac{5C_n}{F_s O_s S}$	-																		
	Square	footing	$q_{safe} = \frac{6C_n}{50.5}$																			
	-	safe =	^{4 safe} F.O.S Safe Bearing	,																		
	where q	Cn =	Undrained SI																			
		F.O.S.	= Facto	or of Safe	ty (usually taken a	s 3.0)																
	578	imple for	ndations	on or	hesive soil																	
		-					ad from 1	autorio ma	- E-11-		F											
					g pressure can te a factor of sa						nally											
	adopte	d.	-								-											
			<i>ions</i> . The all	lowable	bearing pressu	re, $q_{\rm b}$ (in kN	l/m ² ), is give	en by the ex	pressio	on:												
	-	= 1.7c																				
	whe	-			1 ( 137 5						- F											
				0	h (in kN/m²).						F											
			ations. The	allowabl	le bearing press	sure, $q_{ m b}$ (in l	xN/m ² ), is gi	ven by the	express	sion:	F											
		$_{\rm b} = 2c$									F											
	whe		J								F											
											c is the undrained shear strength (in kN/m ² ).											
	It is important to note that the allowable bearing pressures derived from these expressions are not linked to any particular values of settlement.																					
	linked to any particular values of settlement.																					
			urticular val	ues of se	ettlement.			-	ssions :	are no	ot											
			urticular val	ues of se	wable bearing p ettlement. minimum dept			-	ssions :	are no	ut.											
	Found	lations in co	urticular val	ues of se bils at a	ettlement. minimum dept	h of 1m be	ow ground	level		are no	jt.											
		lations in co	urticular val	uesofse bilsata	ettlement. minimum dept Cohesive strength	h of 1m be	ow ground	level		e normally on: sion:												
	Found	lations in co	urticular val	uesofse bilsata	ettlement. minimum dept	h of 1m be Presumed 10	ow ground bearing value (k 0) for foundatio	level (N/m2 or kgf/cm in of width	n2 x	are no	ut.											
	Found	lations in co	urticular val	uesofse bilsata	ettlement. minimum dept Cohesive strength kN/m² or kgf/cm²	h of 1m be	ow ground	level	n2 x	are no	ut											
	Found Descri Hard b	ption	onhesive so	ues of se bils at a ( ys	ettlement. minimum dept Cohesive strength kN/m² or kgf/cm²	h of 1m be Presumed 10	ow ground bearing value (k 0) for foundatio	level (N/m2 or kgf/cm in of width	n2 x 1	are no	ut											
	Found Descri Hard b	ption	onhesive so	ues of se bils at a ( ys	ettlement. minimum dept Cohesive strength kN/m² or kgf/cm² x 100)	h of 1m be Presumed 10	ow ground bearing value (k 0) for foundatio 2m	level KN/m2 or kgf/cm in of width 4rr	n2 x 1		ut.											
	Found Descri Hard b (e.g. de Very s	ption ption oulder clays, ha	onhesive so	ues of se bils at a ( ys	ettlement. minimum dept Cohesive strength kN/m² or kgf/cm² x 100)	h of 1m be Presumed 10	ow ground bearing value (k 0) for foundatio 2m	level KN/m2 or kgf/cm in of width 4m 40	n2 x 1		ut											
	Found Descri Hard b (e.g. de	ption ption oulder clays, ha	onhesive so ard fissured clay and Gault clays)	ues of se bils at a ( ys	ettlement. minimum dept Cohesive strength kN/m² or kgf/cm² x 100) >300	h of 1m be Presumed 10 1m 800	bearing value (k 0) for foundation 2m 600	level KN/m2 or kgf/cm in of width 4m 40	n2 x 1													
	Found Descri Hard b (e.g. de Very s Londor Stiff fis	ption ption coulder clays, ha eeper London a tiff boulder clay n Clay sured clays (e.	art fissured clay and fissured clay and Gault clays) , very stiff 'blue'	ues of se pils at a ( ys	ettlement. minimum dept Cohesive strength kN/m² or kgf/cm² x 100) >300	h of 1m be Presumed 10 1m 800	bearing value (k 0) for foundation 2m 600	Ievel N/m2 or kgf/cr on of width 4m 40 150-2	n2 x n 0 250													
	Found Descri Hard b (e.g. de Very s Londor Stiff fis brown	ption ption coulder clays, ha eeper London a tiff boulder clay n Clay sured clays (e. London clay), s	art fissured clay and fissured clay and Gault clays) , very stiff 'blue'	ues of se pils at a ( ys	ettlement. minimum dept Cohesive strength kN/m ² or kgf/cm ² x 100) >300 150-300	h of 1m be Presumed 10 1m 800 400-800	bearing value (k 0) for foundation 2m 600 300-500	Ievel N/m2 or kgf/cr on of width 4m 40 150-2	n2 x n 0 250													
	Found Descri Hard b (e.g. de Very s Londor Stiff fis	ption ption coulder clays, ha eeper London a tiff boulder clay n Clay sured clays (e. London clay), s	art fissured clay and fissured clay and Gault clays) , very stiff 'blue'	ues of se pils at a ( ys	ettlement. minimum dept Cohesive strength kN/m ² or kgf/cm ² x 100) >300 150-300	h of 1m be Presumed 10 1m 800 400-800	bearing value (k 0) for foundation 2m 600 300-500	Ievel N/m2 or kgf/cr on of width 4m 40 150-2	n2 x n 0 250													
	Found Descri Hard b (e.g. de Very s Londor Stiff fis brown boulde Firm n	lations in co ption oulder clays, ha eeper London a liff boulder clay n Clay sured clays (e. London clay), s r clay ormally consolic	art fissured clay and fissured clay and Gault clays) , very stiff 'blue' g. stiff 'blue' and stiff weathered	ues of se	ettlement. minimum dept Cohesive strength kN/m ² or kgf/cm ² x 100) >300 150-300	h of 1m be Presumed 10 1m 800 400-800	bearing value (k 0) for foundation 2m 600 300-500	Ievel N/m2 or kgf/cr on of width 40 150-2 75-1	n2 x n 0 250 25													
	Found Descri Hard b (e.g. de Very s Londor Stiff fis brown boulde Firm n depth)	lations in co ption oulder clays, ha eeper London a tiff boulder clay n Clay sured clays (e. London clay), s r clay ormally consolic , fluvic-glacial a	erticular val onhesive so ard fissured clay and Gault clays) , very stiff 'blue' g. stiff 'blue' and stiff weathered dated clays (at nd lake clays, u	ues of se	ettlement. minimum dept Cohesive strength kN/m ² or kgf/cm ² x 100) >300 150-300 75-150	h of 1m be Presumed 10 1m 800 400-800 200-400	bearing value (k 0) for foundation 2m 600 300-500 150-250	Ievel N/m2 or kgf/cr on of width 40 150-2 75-1	n2 x n 0 250 25													
	Found Descri Hard b (e.g. de Very s Londor Stiff fis brown boulde Firm n depth) weathe	lations in co ption oulder clays, ha eeper London a liff boulder clay n Clay sured clays (e. London clay), s r clay ormally consolid , fluvio-glacial a ared 'brown' Lor	art fissured clay and fissured clay and Gault clays) , very stiff 'blue' g. stiff 'blue' and tiff weathered dated clays (at nd lake clays, u ndon clay	ues of se pils at a () () () () () () () () () () () () ()	ettlement. minimum dept Cohesive strength kN/m ² or kgf/cm ² x 100) > 300 150-300 75-150 40-75	h of 1m be Presumed 10 1m 800 400-800 200-400	ow ground bearing value (k 0) for foundatio 2m 600 300-500 150-250 75-100	level (N/m2 or kgf/cm in of width 401 150-2 75-1 50-7	n2 x n 0 250 25													
	Found Description Hard b (e.g. de Very st London Stiff fist brown boulde Firm n depth) weather Soft no	lations in co ption oulder clays, ha eeper London a liff boulder clay n Clay sured clays (e. London clay), s r clay ormally consolid ared 'brown' Lor ormally consolid	art fissured clay and fissured clay and Gault clays) , very stiff 'blue' g. stiff 'blue' and tiff weathered dated clays (at nd lake clays, u don clay ated alluvial cla	ues of se pils at a () () () () () () () () () () () () ()	ettlement. minimum dept Cohesive strength kN/m ² or kgf/cm ² x 100) >300 150-300 75-150	h of 1m be Presumed 10 1m 800 400-800 200-400	bearing value (k 0) for foundation 2m 600 300-500 150-250	Ievel N/m2 or kgf/cr on of width 40 150-2 75-1	n2 x n 0 250 25													
	Found Description Hard b (e.g. de Very st London Stiff fist brown boulde Firm n depth) weather Soft no	lations in co ption oulder clays, ha eeper London a liff boulder clay n Clay sured clays (e. London clay), s r clay ormally consolid ared 'brown' Lor ormally consolid	art fissured clay and fissured clay and Gault clays) , very stiff 'blue' g. stiff 'blue' and tiff weathered dated clays (at nd lake clays, u ndon clay	ues of se pils at a () () () () () () () () () () () () ()	ettlement. minimum dept Cohesive strength kN/m ² or kgf/cm ² x 100) > 300 150-300 75-150 40-75	h of 1m be Presumed 10 1m 800 400-800 200-400	ow ground bearing value (k 0) for foundatio 2m 600 300-500 150-250 75-100	level (N/m2 or kgf/cm in of width 401 150-2 75-1 50-7	n2 x n 0 250 25													
	Found Description Hard b (e.g. de Very st London Stiff fist brown boulde Firm n depth) weather Soft no	lations in co ption oulder clays, ha eeper London a liff boulder clay n Clay sured clays (e. London clay), s r clay ormally consolid ared 'brown' Lor ormally consolid	art fissured clay and fissured clay and Gault clays) , very stiff 'blue' g. stiff 'blue' and tiff weathered dated clays (at nd lake clays, u don clay ated alluvial cla	ues of se pils at a () () () () () () () () () () () () ()	ettlement. minimum dept Cohesive strength kN/m ² or kgf/cm ² x 100) > 300 150-300 75-150 40-75	h of 1m be Presumed 10 1m 800 400-800 200-400	ow ground bearing value (k 0) for foundatio 2m 600 300-500 150-250 75-100	level (N/m2 or kgf/cm in of width 401 150-2 75-1 50-7	n2 x n 0 250 25													
	Found Description Hard b (e.g. de Very st London Stiff fist brown boulde Firm n depth) weather Soft no	lations in co ption oulder clays, ha eeper London a liff boulder clay n Clay sured clays (e. London clay), s r clay ormally consolid ared 'brown' Lor ormally consolid	art fissured clay and fissured clay and Gault clays) , very stiff 'blue' g. stiff 'blue' and tiff weathered dated clays (at nd lake clays, u ndon clay ated alluvial cla	ues of se pils at a () () () () () () () () () () () () ()	ettlement. minimum dept Cohesive strength kN/m ² or kgf/cm ² x 100) > 300 150-300 75-150 40-75	h of 1m be Presumed 10 1m 800 400-800 200-400	ow ground bearing value (k 0) for foundatio 2m 600 300-500 150-250 75-100	level (N/m2 or kgf/cm in of width 401 150-2 75-1 50-7	n2 x n 0 250 25													
	Found Description Hard b (e.g. de Very st London Stiff fist brown boulde Firm n depth) weather Soft no	lations in co ption oulder clays, ha eeper London a liff boulder clay n Clay sured clays (e. London clay), s r clay ormally consolid ared 'brown' Lor ormally consolid	art fissured clay and fissured clay and Gault clays) , very stiff 'blue' g. stiff 'blue' and tiff weathered dated clays (at nd lake clays, u ndon clay ated alluvial cla	ues of se pils at a () () () () () () () () () () () () ()	ettlement. minimum dept Cohesive strength kN/m ² or kgf/cm ² x 100) > 300 150-300 75-150 40-75	h of 1m be Presumed 10 1m 800 400-800 200-400	ow ground bearing value (k 0) for foundatio 2m 600 300-500 150-250 75-100	level (N/m2 or kgf/cm in of width 401 150-2 75-1 50-7	n2 x n 0 250 25													
	Found Description Hard b (e.g. de Very st London Stiff fist brown boulde Firm n depth) weather Soft no	lations in co ption oulder clays, ha eeper London a liff boulder clay n Clay sured clays (e. London clay), s r clay ormally consolid ared 'brown' Lor ormally consolid	art fissured clay and fissured clay and Gault clays) , very stiff 'blue' g. stiff 'blue' and tiff weathered dated clays (at nd lake clays, u ndon clay ated alluvial cla	ues of se pils at a () () () () () () () () () () () () ()	ettlement. minimum dept Cohesive strength kN/m ² or kgf/cm ² x 100) > 300 150-300 75-150 40-75	h of 1m be Presumed 10 1m 800 400-800 200-400	ow ground bearing value (k 0) for foundatio 2m 600 300-500 150-250 75-100	level (N/m2 or kgf/cm in of width 401 150-2 75-1 50-7	n2 x n 0 250 25													
	Found Description Hard b (e.g. de Very st London Stiff fist brown boulde Firm n depth) weather Soft no	lations in co ption oulder clays, ha eeper London a liff boulder clay n Clay sured clays (e. London clay), s r clay ormally consolid ared 'brown' Lor ormally consolid	art fissured clay and fissured clay and Gault clays) , very stiff 'blue' g. stiff 'blue' and tiff weathered dated clays (at nd lake clays, u ndon clay ated alluvial cla	ues of se pils at a () () () () () () () () () () () () ()	ettlement. minimum dept Cohesive strength kN/m ² or kgf/cm ² x 100) > 300 150-300 75-150 40-75	h of 1m be Presumed 10 1m 800 400-800 200-400	ow ground bearing value (k 0) for foundatio 2m 600 300-500 150-250 75-100	level (N/m2 or kgf/cm in of width 401 150-2 75-1 50-7	n2 x n 0 250 25													
	Found Description Hard b (e.g. de Very st London Stiff fist brown boulde Firm n depth) weather Soft no	lations in co ption oulder clays, ha eeper London a liff boulder clay n Clay sured clays (e. London clay), s r clay ormally consolid ared 'brown' Lor ormally consolid	art fissured clay and fissured clay and Gault clays) , very stiff 'blue' g. stiff 'blue' and tiff weathered dated clays (at nd lake clays, u ndon clay ated alluvial cla	ues of se pils at a () () () () () () () () () () () () ()	ettlement. minimum dept Cohesive strength kN/m ² or kgf/cm ² x 100) > 300 150-300 75-150 40-75	h of 1m be Presumed 10 1m 800 400-800 200-400	ow ground bearing value (k 0) for foundatio 2m 600 300-500 150-250 75-100	level (N/m2 or kgf/cm in of width 401 150-2 75-1 50-7	n2 x n 0 250 25													
	Found Description Hard b (e.g. de Very st London Stiff fist brown boulde Firm n depth) weather Soft no	lations in co ption oulder clays, ha eeper London a liff boulder clay n Clay sured clays (e. London clay), s r clay ormally consolid ared 'brown' Lor ormally consolid	art fissured clay and fissured clay and Gault clays) , very stiff 'blue' g. stiff 'blue' and tiff weathered dated clays (at nd lake clays, u ndon clay ated alluvial cla	ues of se pils at a () () () () () () () () () () () () ()	ettlement. minimum dept Cohesive strength kN/m ² or kgf/cm ² x 100) > 300 150-300 75-150 40-75	h of 1m be Presumed 10 1m 800 400-800 200-400	ow ground bearing value (k 0) for foundatio 2m 600 300-500 150-250 75-100	level (N/m2 or kgf/cm in of width 401 150-2 75-1 50-7	n2 x n 0 250 25													
	Found Description Hard b (e.g. de Very st London Stiff fist brown boulde Firm n depth) weather Soft no	lations in co ption oulder clays, ha eeper London a liff boulder clay n Clay sured clays (e. London clay), s r clay ormally consolid ared 'brown' Lor ormally consolid	art fissured clay and fissured clay and Gault clays) , very stiff 'blue' g. stiff 'blue' and tiff weathered dated clays (at nd lake clays, u ndon clay ated alluvial cla	ues of se pils at a () () () () () () () () () () () () ()	ettlement. minimum dept Cohesive strength kN/m ² or kgf/cm ² x 100) > 300 150-300 75-150 40-75	h of 1m be Presumed 10 1m 800 400-800 200-400	ow ground bearing value (k 0) for foundatio 2m 600 300-500 150-250 75-100	level (N/m2 or kgf/cm in of width 401 150-2 75-1 50-7	n2 x n 0 250 25													
	Found Description Hard b (e.g. de Very st London Stiff fist brown boulde Firm n depth) weather Soft no	lations in co ption oulder clays, ha eeper London a liff boulder clay n Clay sured clays (e. London clay), s r clay ormally consolid ared 'brown' Lor ormally consolid	art fissured clay and fissured clay and Gault clays) , very stiff 'blue' g. stiff 'blue' and tiff weathered dated clays (at nd lake clays, u ndon clay ated alluvial cla	ues of se pils at a () () () () () () () () () () () () ()	ettlement. minimum dept Cohesive strength kN/m ² or kgf/cm ² x 100) > 300 150-300 75-150 40-75	h of 1m be Presumed 10 1m 800 400-800 200-400	ow ground bearing value (k 0) for foundatio 2m 600 300-500 150-250 75-100	level (N/m2 or kgf/cm in of width 401 150-2 75-1 50-7	n2 x n 0 250 25													
	Found Description Hard b (e.g. de Very st London Stiff fist brown boulde Firm n depth) weather Soft no	lations in co ption oulder clays, ha eeper London a liff boulder clay n Clay sured clays (e. London clay), s r clay ormally consolid ared 'brown' Lor ormally consolid	art fissured clay and fissured clay and Gault clays) , very stiff 'blue' g. stiff 'blue' and tiff weathered dated clays (at nd lake clays, u ndon clay ated alluvial cla	ues of se pils at a () () () () () () () () () () () () ()	ettlement. minimum dept Cohesive strength kN/m ² or kgf/cm ² x 100) > 300 150-300 75-150 40-75	h of 1m be Presumed 10 1m 800 400-800 200-400	ow ground bearing value (k 0) for foundatio 2m 600 300-500 150-250 75-100	level (N/m2 or kgf/cm in of width 400 150-2 75-1 50-7	n2 x n 0 250 25													

	CON	SULTING	Engineerin	g Calculatio	n Sheet		Job No. Sheet No.			Rev.		
]			Consulting		Sheet				86			
							Member/Locatio	n		4		
Jol	o Title	Structure.	Member De	esign - Geot	echnics Pa	d, Strip an	C Drg.	1				
_				technics Pad				C Date 2	1/11/2021	Chd.		
Sc	heme D	esign (No	on Cohesiv	e Soils)								
	Sprea	d footing	on grave									
	-	$_{\rm ole} = 10N$			ad footing	a on dry so	pil ( $\gamma_f = 3$ )					
					-	· ·	soil ( $\gamma_f = 3$ )			<u> </u>		
		$_{\rm ole} = 7N$						the water	table	1		
		$owable = q_{al}$		2	pread tou	ndation at	t or below	the water	lable			
	Where	N is the S	PT value.									
	b) (	Cohesionless	soils (sands	and gravels)								
		safe =	10 N									
	Where o	∃ _{safe} = N	safe bearing	pressure values ("N" blov	we)							
		Foundation	ns in non-co	ohesive soil	s at a mini	mum depti	h of 0.75m	below gro	und level			
										<b>_</b>		
		Description o	of soil		N-value in			ed bearing va		<del> </del>		
					penetrat	ion test		or kgf/cm ² x 1 indation of wid				
						- F						
							1m	2m	4m			
		Very dense s	ands and grave	əls	>5	0	600	500	400			
		Dense sands	and gravals		30-4	50	350-600	300-500	250-400			
		Medium-den:	se sands and g	ravels	10-3	30	150-350	100-300	100-250	+		
		Loose sands	-		5-1	0	50-150	50-100	50-100	+		
		20000 00100	and gravalo		0-	Ŭ	00-100	00-100				
				pressure is d	efined as th	at causing	25mm settl	ement und	er the	<b> </b>		
		foundation	waan.						ŀ	<del> </del>		
				in a depth eq its width, the				and the de	pth of the	<u> </u>		
				exceed 25m				hould be ha	alved.	-		
	Chart	6		his haadaa			-l-4' '					
	Chart	for estima	ting allowa	able bearing	g pressure	e for foun	dations in	sands		-		
			e shown as	6					-			
	belows	s per 300m	m			700						
	If the w	/ater table i	s within a d	epth	ଖ .	600 -						
			of the four		250							
			he foundat b its width, t			500 - 30						
			e doubled.			400 - 40	+					
	lf sottle	monte mu	st not exce	ad 25mm	8 <u>8</u>	"	$  \setminus  $	T+		+		
			st not excee aring values		Allowable pressure - kN/m2 Water tablebelow depth B	300 - 50		┈┼╌┢		1		
	be halv		-			200 - 20	╞╌┝╼╕					
					<b>Z</b> 3		$\downarrow$	1-1	╧╡╉│			
						100 <b>-</b> ज्	┶┶╍┶			<b> </b>		
						- <del> </del>				<del> </del>		
										<b> </b>		

	CON	SULTING	Engineerin	a Ca	lculatio	on Sheet		Job No.	Sh	eet No.		Rev.
			Consulting			Shi Sheet		jXXX		8	37	
								Member/Loca	tion			
Jo	b Title	Structure.	Member De	esian	- Geo	technics Pa	d, Strip and					
						d, Strip and			X Date	21	/11/2021	hd.
								<u> </u>				
			Ell.	3 ///A	-							
	D					0' = ~ ?						
	F.		¥_X		Y +	$q' = \gamma z$	• <u>G</u> ,					
	$\searrow$	45 - φ/2	8	_				_				
		H		/		$\geq$						
	C											
	Ouick	estimat	e desian	me	thod	ls for sha	allow fou	undatio	ons			
						aring cap						
<u> </u>	offer I	winch Ha	ncon							ļ		
<u> </u>	Factor o	of safety aga	inst bearing	capa	acity fa	lure, $\gamma_f = 2$ . soil, <i>B</i> is the	0 to 3.0, $q'_o$	is the eff	ective	over- is the		
<u> </u>	burden	pressure, γ i n (for the dr	s the unit w ained or un	eight drain	ed case	under cons	ideration) ar	nd $N_c$ , $N_c$	and /	$V_{\gamma}$ are		
-	shallow	bearing cap	pacity factor	5.			-		-	-		
						5- PM				┣		
⊢	Strip fo	otings: q _{allov}	$_{vable} = \frac{cN_c}{c}$	$+ q_0'$	$\frac{v_q + 0}{v}$	. SYBNY				⊦		
										ŀ		
	Pad foo	tings: q _{allow}	$able = \frac{1.3 \text{ cV}}{2}$	c + (	7. Ng +	$0.4\gamma BN_{\gamma}$				ŀ		
					. 1		N and N	are set o	ut he	ow in		
	Approx relation	imate value:	s for the bea	ring	capacit	y factors N _c	, $N_q$ and $N_\gamma$	, are set t	ut bei	000 111		
	relation	ι το φ.										
							*					
	Interna ¢	l angle of sh	ear			g capacity fa			N.			
					Nc		N _q 1.0			r ).0		
	0				5.0 6.5		1.5		0	0.0		
	10 15				8.5 11.0		2.5 4.0		1	.4		
	20 25				15.5 21.0		6.5 10.5		8	3.5 3.0		
	30 35				30.0 45.0		18.5 34.0			7.0		
	40				75.0		65.0		98	3.0		
	* Values	from charts b	by Brinch Hans	sen (1	961).					ŀ		
<u> </u>												
<u> </u>												
-												
⊢												
L_												
<b> </b>												

CONSULTING		Engineerin	a Calculatio	on Sheet		Job No. Sheet No.		Rev.	
ENGI	NEERS	Consulting	Engineers	in Sheet		jXXX	jXXX 88		
						Member/Location			
	Ctructure	Momber D		tochnice D-					
Job Title	Member De	Member De	tochnics Pa	d Strip and	u, Strip and	Made by XX	Date <b>71</b>	/11/2021	thd.
Su ucture,		esign - Geo	lechnics Pa	u, suip and	Ικαι	<b>XX</b>	21	/11/2021	

CONSULTING		Engineerin	a Calculatio	n Sheet		Job No. Sheet No.		Rev.			
ENGI	NEERS	Consulting	Engineers	in Sheet		jXXX	8	89			
						Member/Location					
	Ctructure	Momber Dr		tochnice D-							
Job Title	Member De	Member De	tochnice Do	d Strip and	u, Strip and	Made by XX	Date <b>31</b>	/11/2021	hd.		
Structure,		esigii - Geol	lechnics Pa	u, suip and	ΙΚαιί		21	/11/2021			
					<u> </u>						
					<u> </u>						
			<u> </u>								